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Outline
 Uniprocessor Parallelism
 Pipelining, Superscalar, Out-of-order execution

 Vector Processing/SIMD

 Multithreading: including pThreads 

 Uniprocessor Memory Systems 

 Parallel Computer Architecture 
 What is Parallel Architecture?

 A Parallel Zoo Of Architectures

 Multicore Chips 
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UNIPROCESSOR 
PARALLELISM

Parallel architecture
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Parallelism is Everywhere 
 Modern Processor Chips have ≈ 1 billion transistors

 Clearly must get them working in parallel 
 Question: how much of this parallelism must programmer understand? 

 How do uniprocessor computer architectures extract 
parallelism?
 By finding parallelism within instruction stream
 Called “Instruction Level Parallelism” (ILP)
 The theory: hide parallelism from programmer
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Parallelism is Everywhere 
 Goal of Computer Architects until about 2002: 

 Hide Underlying Parallelism from everyone: OS, Compiler, 
Programmer 

 Examples of ILP techniques
 Pipelining: Overlapping individual parts of instructions 
 Superscalar execution: Do multiple things at same time 
 VLIW: Let compiler specify which operations can run in parallel 
 Vector Processing: Specify groups of similar (independent) operations 
 Out of Order Execution (OOO): Allow long operations to happen
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PIPELINING, SUPERSCALAR, 
OUT-OF-ORDER EXECUTION

Parallel architecture
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What is Pipelining?
Dave Patterson’s Laundry example: 4 people doing laundry
wash (30 min) + dry (40 min) + fold (20 min) = 90 min Latency

•  In this example:
– Sequential execution takes

4 * 90min = 6 hours
– Pipelined execution takes

30+4*40+20 = 3.5 hours
•  Bandwidth = loads/hour

– BW = 4/6 l/h w/o pipelining
– BW = 4/3.5  l/h w pipelining
– BW <= 1.5 l/h w pipelining,

more total loads
•  Pipelining helps bandwidth but not 
latency (90 min)
•  Bandwidth limited by slowest pipeline 
stage
•  Potential speedup = Number of pipe 
stages
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5 Steps of MIPS Pipeline
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Visualizing The Pipeline

 In ideal case: CPI (cycles/instruction) = 1! 
 On average, put one instruction into pipeline, get one out 
 Superscalar: Launch more than one instruction/cycle
 In ideal case, CPI < 1
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Limits to Pipelining
 Overhead prevents arbitrary division

 Cost of latches (between stages) limits what can do within stage
 Sets minimum amount of work/stage

 Hazards prevent next instruction from executing during its 
designated clock cycle
 Structural hazards: Attempt to use the same hardware to do two 

different things at once
 Data hazards: Instruction depends on result of prior instruction still in 

the pipeline
 Control hazards: Caused by delay between the fetching of 

instructions and decisions about changes in control flow (branches 
and jumps)

 Superscalar increases occurrence of hazards
 More conflicting instructions/cycle
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Data Hazard: Must go Back in Time?

 Data dependencies between adjacent instructions
 Must wait (“stall”) for result to be done (No “back in time” exists!)
 Net result is that CPI > 1

 Superscalar increases frequency of hazards
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Out-of-Order (OOO) Execution
 Key idea: Allow instructions behind stall to proceed

 Out-of-order execution → out-of-order completion 
 Dynamic Scheduling Issues from OOO scheduling 

 Must match up results with consumers of instructions 
 Precise Interrupts

DIVD
ADDD
SUBD

F0,F2,F4
F10,F0,F8
F12,F8,F14



13

Modern ILP
 Dynamically scheduled, out-of-order execution

 Current microprocessors fetch 6-8 instructions per cycle 
 Pipelines are 10s of cycles deep → many overlapped instructions in 

execution at once, although work often discarded  

 What happens 
 Grab a bunch of instructions, determine all their dependences, 

eliminate dep’s wherever possible, throw them all into the execution 
unit, let each one move forward as its dependences are resolved 

 Appears as if executed sequentially 
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Modern ILP（Cont.）
 Dealing with Hazards: May need to guess! 

 Called “Speculative Execution” 
 Speculate on Branch results, Dependencies, even Values! 
 If correct, don’t need to stall for result → yields performance 
 If not correct, waste time and power
 Must be able to UNDO a result if guess is wrong 
 Problem: accuracy of guesses decreases with number of simultaneous 

instructions in pipeline 

 Huge complexity 
 Complexity of many components scales as n2 (issue width) 
 Power consumption big problem
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Technology Trends: Moore’s Law

Gordon Moore (co-founder of 
Intel) predicted in 1965 that the 
transistor density of 
semiconductor chips would 
double roughly every 18 months.

2X transistors/Chip Every 1.5 years

Called “Moore’s Law”

Microprocessors have
become smaller, denser,
and more powerful.
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Limiting Forces: Clock Speed and ILP
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VECTOR PROCESSING/SIMD
Parallel architecture
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Vector Code Example

 Require programmer (or compiler) to identify parallelism
 Hardware does not need to re-extract parallelism

 Many multimedia/HPC applications are natural consumers 
of vector processing
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Vector Programming Model
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SIMD Architecture

 Single Instruction Multiple Data (SIMD)
 Central controller broadcasts instructions to multiple 

processing elements (PEs)
 Only requires one controller for whole array
 Only requires storage for one copy of program
 All computations are fully synchronized

 Recent return to popularity
 GPU (Graphics Processing Units) have SIMD properties
 However, also multicore behavior, so mix of SIMD and MIMD (more later)

 Dual between Vector and SIMD execution
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Pseudo SIMD: (Poor-Man’s SIMD?)
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E.g.: SSE / SSE2 SIMD on Intel
 SSE2 data types: anything that fits into 16 bytes, e.g.,

 Instructions perform add, multiply etc. on all the data in this 16-byte 
register in parallel

 Challenges
 Need to be contiguous in memory and aligned
 Some instructions move data from one part of register to another

 In theory, the compiler understands all of this
 When compiling, it will rearrange instructions to get a good “schedule” that 

maximizes pipelining, uses FMAs and SIMD
 It works with the mix of instructions inside an inner loop or other block of code

 But in practice the compiler may need your help



23

General-Purpose GPUs (GP-GPUs)

 In 2006, Nvidia introduced GeForce 8800 GPU supporting a new 
programming language: CUDA
 Compute Unified Device Architecture
 OpenCL is a vendor-neutral version of same ideas

 Idea: Take advantage of GPU computational performance and memory 
bandwidth to accelerate some kernels for general-purpose computing

 Attached processor model: Host CPU issues data-parallel kernels to GP-
GPU for execution
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MULTITHREADING: 
INCLUDING PTHREADS

Parallel architecture



25

Thread Level Parallelism (TLP)
 ILP exploits implicit parallel operations within a loop or 

straight-line code segment 
 TLP explicitly represented by the use of multiple threads of 

execution that are inherently parallel 
 Threads can be on a single processor 
 Or, on multiple processors 

 Concurrency vs Parallelism
 Concurrency is when two tasks can start, run, and complete in 

overlapping time periods. It doesn't necessarily mean they'll ever both 
be running at the same instant
• For instance, multitasking on a single-threaded machine

 Parallelism is when tasks literally run at the same time, eg. on a 
multicore processor

 Goal: Use multiple instruction streams to improve  
 Throughput of computers that run many programs  
 Execution time of multi-threaded programs
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Common Notions of Thread Creation

 Threads expressed in the code may not turn into independent 
computations 
 Only create threads if processors idle 
 Example: Thread-stealing runtimes such as cilk
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Overview of POSIX Threads
 POSIX: Portable Operating System Interface for UNIX 

 Interface to Operating System utilities 

 Pthreads: The POSIX threading interface 
 System calls to create and synchronize threads 
 Should be relatively uniform across UNIX-like OS platforms 
 Originally IEEE POSIX 1003.1c 

 Pthreads contain support for 
 Creating parallelism 
 Synchronizing 
 No explicit support for communication, because shared memory is 

implicit; a pointer to shared data is passed to a thread 
• Only for HEAP!  Stacks not shared
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Forking POSIX Threads
Signature:

int pthread_create(pthread_t *,
const pthread_attr_t *,
void * (*)(void *),
void *);

Example call:
errcode = pthread_create(&thread_id; &thread_attribute; &thread_fun; &fun_arg);

 thread_id is the thread id or handle (used to halt, etc.)
 thread_attribute various attributes

 Standard default values obtained by passing a NULL pointer
 Sample attribute: minimum stack size

 thread_fun the function to be run (takes and returns void*)
 fun_arg an argument can be passed to thread_fun when it 

starts
 errorcode will be set nonzero if the create operation fails
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Simple Threading Example (pThreads)
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Shared Data and Threads
 Variables declared outside of main are shared
 Objects allocated on the heap may be shared (if pointer is 

passed)
 Variables on the stack are private: passing pointer to these 

around to other threads can cause problems

 Often done by creating a large “thread data” struct, which is 
passed into all threads as argument

char *message = "Hello World!\n“;

pthread_create(&thread1, NULL,
print_fun,(void*) message);
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Loop Level Parallelism
 Many application have parallelism in loops

double stuff [n][n];
for (int i = 0; i < n; i++)

for (int j = 0; j < n; j++)
… pthread_create (…, update_stuff, …, &stuff[i][j]);

 But overhead of thread creation is nontrivial
 update_stuff should have a significant amount of work

 Common Performance Pitfall: Too many threads
 The cost of creating a thread is 10’s of thousands of cycles on 

modern architectures
 Solution: Thread blocking: use a small # of threads, often equal to the 

number of cores/processors or hardware threads
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Thread Scheduling

 Once created, when will a given thread run?
 It is up to the operating system or hardware, but it will run eventually, 

even if you have more threads than cores 
 But-scheduling may be non-ideal for your application 

 Programmer can provide hints or affinity in some cases 
 E.g., create exactly P threads and assign to P cores 

 Can provide user-level scheduling for some systems 
 Application-specific tuning based on programming model
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Multithreaded Execution
 Multitasking operating system

 Gives “illusion” that multiple things happen at same time 
 Switches at a coarse-grained time (for instance: 10ms) 

 Hardware Multithreading: multiple threads share processor 
simultaneously (with little OS help) 
 Hardware does switching 

• HW for fast thread switch in small number of cycles 
• much faster than OS switch which is 100s to 1000s of clocks 

 Processor duplicates independent state of each thread  
• e.g., a separate copy of register file, a separate PC, and for running 

independent programs, a separate page table 
 Memory shared through the virtual memory mechanisms, which already 

support multiple processes
 When to switch between threads? 

 Alternate instruction per thread (fine grain) 
 When a thread is stalled, perhaps for a cache miss, another thread can 

be executed (coarse grain)
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What about combining ILP and TLP?
 TLP and ILP exploit two different kinds of parallel structure in 

a program 

 Could a processor oriented at ILP benefit from exploiting TLP? 
 functional units are often idle in data path designed for ILP because of 

either stalls or dependences in the code 
 TLP used as a source of independent instructions that might keep the 

processor busy during stalls 
 TLP be used to occupy functional units that would otherwise lie idle 

when insufficient ILP exists 

 Called “Simultaneous Multithreading” 
 Intel renamed this “Hyperthreading” 
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Quick Recall: Many Resources IDLE!
For an 8-way superscalar

From: Tullsen, Eggers, 
and Levy, 
“Simultaneous 
Multithreading: 
Maximizing On-chip 
Parallelism, ISCA, 1995
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Simultaneous Multi-threading
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Power5 Dataflow

 Why only two threads? 
 With 4, one of the shared resources (physical registers, cache, 

memory bandwidth) would be prone to bottleneck 
 Cost

 The Power5 core is about 24% larger than the Power4 core because 
of the addition of SMT (Simultaneous Multi-threading) support 
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UNIPROCESSOR MEMORY 
SYSTEMS 

Parallel architecture



39

Limiting Force: Memory Wall

 How do architects address this gap? 
 Put small, fast “cache” memories between CPU and DRAM (Dynamic 

Random Access Memory). 
 Create a “memory hierarchy” 
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Principle of Locality
 Principle of Locality

 Program access a relatively small portion of the address space at any 
instant of time 

 Two Different Types of Locality
 Temporal Locality (Locality in Time): If an item is referenced, it will 

tend to be referenced again soon (e.g., loops, reuse) 
 Spatial Locality (Locality in Space): If an item is referenced, items 

whose addresses are closeby tend to be referenced soon (e.g., 
straightline code, array access) 

 Last 25 years, HW relied on locality for speed
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Programs with locality cache well
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Memory Hierarchy
 Take advantage of the principle of locality to

 Present as much memory as in the cheapest technology 
 Provide access at speed offered by the fastest technology
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Memory Hierarchy
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Example of Modern Core: Nehalem

 ON-chip cache resources 
 For each core: L1: 32K instruction and 32K data cache, L2: 1MB, L3: 

8MB shared among all 4 cores 
 Integrated, on-chip memory controller (DDR3) 
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Memory Hierarchy: Terminology
 Hit: data appears in some blocks in the upper level (example: 

Block X)
 Hit Rate: the fraction of memory access found in the upper level 
 Hit Time: Time to access the upper level which consists of 

RAM access time + Time to determine hit/miss 
 Miss: data needs to be retrieve from a block in the lower level 

(Block Y)
 Miss Rate = 1 - (Hit Rate) 
 Miss Penalty: Time to replace a block in the upper level + Time to deliver 

the block the processor 
 Hit Time << Miss Penalty (500 instructions on 21264!) 
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Impact of Hierarchy on Algorithms
 Today CPU time is a function of (ops, cache misses)
 What does this mean to compilers, data structures, algorithms?

 Quicksort: fastest comparison based sorting algorithm when keys fit in 
memory

 Radix sort: also called “linear time” sort. For keys of fixed length and 
fixed radix a constant number of passes over the data is sufficient 
independent of the number of keys

 “The Influence of Caches on the Performance of Sorting” by A. 
LaMarca and R.E. Ladner. Proceedings of the Eighth Annual 
ACM-SIAM Symposium on Discrete Algorithms, January, 1997, 
370-379.
 For Alphastation 250, 32 byte blocks, direct mapped L2 2MB cache, 8 

byte keys, from 4000 to 4000000
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Experimental Study (Membench)
 Microbenchmark for memory system performance



48

Membench: What to Expect

 Consider the average cost per load 
 Plot one line for each array length, time vs. stride 
 Small stride is best: if cache line holds 4 words, at most ¼ miss 
 If array is smaller than a given cache, all those accesses will hit (after 

the first run, which is negligible for large enough runs) 
 Picture assumes only one level of cache 
 Values have gotten more difficult to measure on modern procs
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Memory Hierarchy on a Sun Ultra-2i
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Memory Hierarchy on a Power3
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Memory Hierarchy Lessons
 Caches vastly impact performance 

 Cannot consider performance without considering memory hierarchy 

 Actual performance of a simple program can be a complicated 
function of the architecture 
 Slight changes in the architecture or program change the performance 

significantly 
 To write fast programs, need to consider architecture 

• True on sequential or parallel processor 
 We would like simple models to help us design efficient algorithms 
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Memory Hierarchy Lessons
 Common technique for improving cache performance, called 

blocking or tiling
 Idea: used divide-and-conquer to define a problem that fits in 

register/L1-cache/L2-cache 

 Autotuning: Deal with complexity through experiments 
 Produce several different versions of code 

• Different algorithms, Blocking Factors, Loop orderings, etc 

 For each architecture, run different versions to see which is fastest 

 Can (in principle) navigate complex design options for optimum
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New Advances on Memory and Storage
－Storage Class Memory
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Reconstruction of Virtual Memory Architecture: 
Break the I/O Bottleneck
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New In-Memory Computing Architecture
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Oracle EXADATA
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WHAT IS PARALLEL 
ARCHITECTURE

Parallel architecture
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What is Parallel Architecture?
 Machines with multiple processors
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One Definition of Parallel Architecture
A parallel computer is a collection of processing 

elements that cooperate to solve large problems fast
Some broad issues
 Resource Allocation

 how large a collection? 
 how powerful are the elements?
 how much memory?

 Data access, Communication and Synchronization
 how do the elements cooperate and communicate?
 how are data transmitted between processors?
 what are the abstractions and primitives for cooperation?

 Performance and Scalability
 how does it all translate into performance?
 how does it scale?
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Types of Parallelism
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A PARALLEL ZOO OF 
ARCHITECTURES

Parallel architecture
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MIMD Machines
 Multiple Instruction, Multiple Data (MIMD) 

 Multiple independent instruction streams, program counters, etc 
 Called “multiprocessing” instead of “multithreading”  

• Although, each of the multiple processors may be multithreaded 
 When independent instruction streams confined to single chip, 

becomes a “multicore” processor 
 Shared memory: Communication through Memory 

 Option 1: no hardware global cache coherence 
 Option 2: hardware global cache coherence 

 Message passing: Communication through Messages 
 Applications send explicit messages between nodes in order to 

communicate 
 For most machines, shared memory built on top of message-

passing network 
 Bus-based machines are “exception” 
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Examples of MIMD Machines
 Symmetric Multiprocessor 

 Multiple processors in box with shared 
memory communication 

 Current MultiCore chips like this 
 Every processor runs copy of OS 

 Non-uniform shared-memory with 
separate I/O through host  
 Multiple processors  

• Each with local memory 
• general scalable network  

 Extremely light “OS” on node provides 
simple services  
• Scheduling/synchronization 

 Network-accessible host for I/O 
 Cluster 

 Many independent machine connected 
with general network  

 Communication through messages
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Cray T3E (1996)
Follow-on to earlier T3D (1 993) using 21064’s
Up to 2,048 675MHz Alpha 21164 processors connected in 3D torus
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Cray T3E (1996)
 Each node has 256MB-2GB local DRAM memory 
 Load and stores access global memory over network 
 Only local memory cached by on-chip caches 
 Alpha microprocessor surrounded by custom “shell” circuitry 

to make it into effective MPP node
 Shell provides

 multiple stream buffers instead of board-level (L3) cache 
 external copy of on-chip cache tags to check against remote writes to 

local memory, generates on-chip invalidates on match 
 512 external E registers (asynchronous vector load/store engine) 
 address management to allow all of external physical memory to be 

addressed 
 atomic memory operations (fetch&op) 
 support for hardware barriers/eureka to synchronize parallel tasks
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Cray XT5 (2007)



67

Sun Starfire UE10000 (1997)
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SGI Origin 2000 (1996)
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 Cache-coherence Shared Memory 
 Partially in Software! 
 Sequential Consistency 
 LimitLESS cache coherence for better scalability 

 User-level Message-Passing 
 Fast, atomic launch of messages 
 Active messages 
 User-level interrupts 

 Rapid Context-Switching 
 Course-grained multithreading 

 Single Full/Empty bit per word for synchronization 
 Can build locks, barriers, other higher-level constructs

MIT Alewife Multiprocessor: SM & MP
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Message Passing MPPs
(Massively Parallel Processors)
 Initial Research Projects 
 Caltech Cosmic Cube (early 1980s) using custom Mosaic processors 
 J-Machine (early 1990s) MIT 
 Commercial Microprocessors including MPP Support 
 Transputer (1985) 
 nCube-1(1986) /nCube-2 (1990) 
 Standard Microprocessors + Network Interfaces 
 Intel Paragon/i860 (1991) 
 TMC CM-5/SPARC (1992) 
 Meiko CS-2/SPARC (1993) 
 IBM SP-1/POWER (1993) 
 MPP Vector Supers 
 Fujitsu VPP500 (1994)
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MIT J-Machine (Jelly-bean machine)

 3-dimensional network topology 
 Non-adaptive, E-cubed routing 
 Hardware routing 
 Maximize density of communication 

 64-nodes/board, 1024 nodes total 
 Low-powered processors  
 Message passing instructions 
 Associative array primitives to aid in synthesizing shared-address space 

 Extremely fine-grained communication 
 Hardware-supported Active Messages
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IBM Blue Gene/L Processor
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BG/L 64K Processor System
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42nd TOP500 on November 18, 2013
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Tianhe-2 
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Tianhe-2 
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MULTICORE CHIPS
Parallel architecture
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Parallel Chip-Scale Processors

 Multicore processors emerging in general-purpose market due 
to power limitations in single-core performance scaling
 4-16 cores in 2009, connected as cache-coherent SMP 
 Cache-coherent shared memory 

 Embedded applications need large amounts of computation
 Recent trend to build “extreme” parallel processors with dozens to 

hundreds of parallel processing elements on one die 
 Often connected via on-chip networks, with no cache coherence 
 Examples: 188 core “Metro” chip from CISCO
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Sun’s T1 (“Niagara”)
 Highly Threaded
 8 Cores 
 4 Threads/Core 

 Target: Commercial server
applications 
 High thread level parallelism (TLP) 

• Large numbers of parallel client requests 
 Low instruction level parallelism (ILP) 

• High cache miss rates 
• Many unpredictable branches 
• Frequent load-load dependencies 

 Power, cooling, and space are major concerns for data centers 
 Metric: Performance/Watt/Sq. Ft. 
 Approach: Multicore, Fine-grain multithreading, Simple 

pipeline, Small L1 caches, Shared L2
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T1 Fine-Grained Multithreading
 Each core supports four threads and has its own level one 

caches (16KB for instructions and 8 KB for data) 
 Coherency is enforced among the L1 caches by a directory associated 

with each L2 cache block  
 Switching to a new thread on each clock cycle  
 Idle threads are bypassed in the scheduling  

 Waiting due to a pipeline delay or cache miss 
 Processor is idle only when all 4 threads are idle or stalled  

 Both loads and branches incur a 3 cycle delay that can only 
be hidden by other threads  

 A single set of floating-point functional units is shared by all 8 
cores 
 floating-point performance was not a focus for T1 
 (New T2 design has FPU per core)
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Embedded Parallel Processors
 Often embody a mixture of old architectural styles and ideas 

 Exposed memory hierarchies and interconnection networks 
 Programmers code to the “metal” to get best cost/power/performance 
 Portability across platforms less important 

 Customized synchronization mechanisms 
 Interlocked communication channels (processor blocks on read if data 

not ready) 
 Barrier signals 
 Specialized atomic operation units 

 Many more, simpler cores
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Cisco CSR-1 Metro Chip
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IBM Cell Processor (Playstation-3)
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Nvidia G8800 Graphics Processor
 This is a GPU (Graphics Processor Unit) 

 Available in many desktops  
 Example: 16 cores similar to a vector processor with 8 lanes (128 stream 

processors total) 
 Processes threads in SIMD groups of 32 (a “warp”) 
 Some stripmining done in hardware 

 Threads can branch, but loses performance compared to when all threads 
are running same code 

 Complete parallel programming environment (CUDA) 
 A lot of parallel codes have been ported to these GPUs 
 For some data parallel applications, GPUs provide the fastest implementations



85

Nvidia Fermi GF100 GPU
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Nvidia Tesla K40 GPU



87

Nvidia Tesla GPU
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The New Wave
 The rate of technological 

progress for networking is an 
astounding 10-fold increase 
every 4 years (77.8% yearly 
compound rate)

 The emergence of network-centric computing (as opposed to 
processor-centric) –distributed high performance/throughput 
computing
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