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Outline

Uniprocessor Parallelism

» Pipelining, Superscalar, Out-of-order execution
» Vector Processing/SIMD

» Multithreading: including pThreads

» Uniprocessor Memory Systems

Parallel Computer Architecture

» Whatis Parallel Architecture?

> A Parallel Zoo Of Architectures

Multicore Chips

wnp FrasELY



Parallel architecture

UNIPROCESSOR
PARALLELISM

wny FrAsELF 5
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Parallelism Is Everywhere

[l Modern Processor Chips have = 1 billion transistors
» Clearly must get them working in parallel
» Question: how much of this parallelism must programmer understand?

[1 How do uniprocessor computer architectures extract
parallelism?

» By finding parallelism within instruction stream
» Called “Instruction Level Parallelism” (ILP)
» The theory: hide parallelism from programmer

wnp Fra#nxt 4
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Parallelism Is Everywhere

[1 Goal of Computer Architects until about 2002:

>

Hide Underlying Parallelism from everyone: OS, Compiler,
Programmer

[1 Examples of ILP techniques

>

>
>
>
>

Pipelining: Overlapping individual parts of instructions

Superscalar execution: Do multiple things at same time

VLIW: Let compiler specify which operations can run in parallel
Vector Processing: Specify groups of similar (independent) operations
Out of Order Execution (OOO): Allow long operations to happen

il FrHELY 5
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Parallel architecture

PIPELINING, SUPERSCALAR,
OUT-OF-ORDER EXECUTION

uny Fr##ELT 6
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What is Pipelining?

Dave Patterson’s Laundry example: 4 people doing laundry
wash (30 min) + dry (40 min) + fold (20 min) = 90 min Latency

* In this example:
6PM 7 8 9 — Sequential execution takes
| 4 * 90min = 6 hours

| Time o :
| | | | — Pipelined execution takes
: 30 40 40 40 40 20 30+4*40+20 = 3.5 hours
s @ e e Bandwidth = loads/hour
k = 5? — BW = 4/6 I/h w/o pipelining
. - — BW =4/3.5 I/h w pipelining
f ﬁD 4[7 — BW <= 1.5I/h w pipelining,
d P—=1 more total loads
i @ ﬁ@ a7 * Pipelining h_elps bandwidth but not
= ° latency (90 min)
| &6 ©OPA7 - Bandwidth limited by slowest pipeline

stage
« Potential speedup = Number of pipe

stages
wny FrA#ELT 4
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5 Steps of MIPS Pipeline

Instruction Instr. Decode Execute Memory Write
Fetch i Reg. Fetch | Addr. Calc | Access | Back
Next PC T :
Next SEQ PC ext SEQ PC

WE Data
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Visualizing The Pipeline

Time (clock cycles)

ECycIe. 1§Cycle 2 ECycIe BECycIe 4§Cycle 5 Et‘.‘ycle 6§Cycle ?

I ;

n E fefetch[ ] .E i .ﬁ DMem g | i

1 : :
r i P [efetch .B i .ﬁ DMem

0 . -

f' DMem

d : .

e

ro| Ifetch .E i ‘a =

0 Inideal case: CPI (cycles/'instru'ction) =1
» On average, put one instruction into pipeline, get one out

[1 Superscalar: Launch more than one instruction/cycle

» Inideal case, CPI<1 S RrARAT
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Limits to Pipelining

[1 Overhead prevents arbitrary division

» Cost of latches (between stages) limits what can do within stage
» Sets minimum amount of work/stage

[1 Hazards prevent next instruction from executing during its
designated clock cycle

» Structural hazards: Attempt to use the same hardware to do two
different things at once

» Data hazards: Instruction depends on result of prior instruction still in
the pipeline
» Control hazards: Caused by delay between the fetching of
Instructions and decisions about changes in control flow (branches
and jumps)
[1 Superscalar increases occurrence of hazards

» More conflicting instructions/cycle
unl Fra#x¥ o
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Data Hazard: Must go Back in Time?

Time (clock cycles)

I| 1w zl, 0(r2) =" |=§ vl AL
n i
: L
t | sub rd4,rl,r6 rrercn] JI | % Il-s Afoffen 3
r -
:
O| and r6,rl,r7 If“‘-‘ III-E DMem ﬂ
”
d
i or r8,rl,r9 I IB Ilﬁ DMem ﬂ

[1 Data dependencies between adjacent instructions

» Must walit (“stall”) for result to be done (No “back in time” exists!)
» Netresultis that CPI > 1

[1 Superscalar increases frequency of hazards

wny Fr#ELY 4
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Out-of-Order (OOQO) Execution

[l Key idea: Allow instructions behind stall to proceed

DIVD FO,F2,F4

ADDD F10,FO,F8

SUBD F12,F8,F14

[1 Out-of-order execution — out-of-order completion

[1 Dynamic Scheduling Issues from OOO scheduling
» Must match up results with consumers of instructions
» Precise Interrupts

LD F634(R2)
LD F245(R3)
MULTD FOF2F4
SUBD  F8 F6,F2
DIVD FI0,FOF6
ADDD _F6 F8 F2

IF ID EX MEM WB
IF ID EX MEM WB RAW
IF ID stall MI M2 M3 M4 M5 M6 M7 M8 M9 MIO MEM WB
IF ID Al A2 MEM WB

IF ID stall stall stall stall stall stall stall stall s’rall. DI D2

I ID Al A2 MEM WB &=\, o
,m? Fra#+Y
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Modern ILP

[1 Dynamically scheduled, out-of-order execution

>
>

Current microprocessors fetch 6-8 instructions per cycle
Pipelines are 10s of cycles deep — many overlapped instructions in
execution at once, although work often discarded

1 What happens

>

Grab a bunch of instructions, determine all their dependences,
eliminate dep’s wherever possible, throw them all into the execution
unit, let each one move forward as its dependences are resolved
Appears as if executed sequentially

ﬁ Frahx¥ 13
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Modern ILP (Cont.)

[1 Dealing with Hazards: May need to guess!

>

VV V VY Y

Called “Speculative Execution”

Speculate on Branch results, Dependencies, even Values!

If correct, don’t need to stall for result — yields performance

If not correct, waste time and power

Must be able to UNDO a result if guess is wrong

Problem: accuracy of guesses decreases with number of simultaneous
Instructions in pipeline

[l Huge complexity
» Complexity of many components scales as n? (issue width)

>

Power consumption big problem

unp FrAELF
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Technology Trends: Moore’s Law
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2X transistors/Chip Every 1.5 years

Gordon Moore (co-founder of Called “Moore’s Law”
Intel) predicted in 1965 that the

transistor density of Microprocessors have
semiconductor chips would become smaller, denser,

double roughly every 18 months. and more powerful.
gy Fra#xT 5
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Limiting Forces: Clock Speed and ILP

* Chip density is
continuing increase
~2X every 2 years

* Clock speed is not
- # processors/chip (cores)
may double instead
+ There is little or no
more Instruction Level
Parallelism (ILP
to be found

- Can no longer allow
programmer to think in
terms of a serial
programming model

* Conclusion:
Parallelism must be

exposed to software!

10,000,000
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Parallel architecture

VECTOR PROCESSING/SIMD

unp FrHELT



Vector Code Example

SCS

_§ECL

# C code
for (1=0; i<e4;
C[i] = A[i]

i++)
+ B[i];

# Scalar Code

LI R4, 64
loop:

L.D FO, O(R1l)

L.D F2, 0(R2)

ADD.D F4, F2, FO
S.D F4, 0(R3)
DADDIU R1, 8
DADDIU R2, 8
DADDIU R3, 8
DSUBIU R4, 1
BNEZ R4, loop

# Vector Code
LI VLR, 64
LV V1, R1
LV V2, R2
ADDV.D V3, V1,
SV V3, R3

V2

[1 Require programmer (or compiler) to identify parallelism
» Hardware does not need to re-extract parallelism

1 Many multimedia/HPC applications are natural consumers
of vector processing

iy FrHELT 18



Vector Programming Model

/ Scalar Registers Vector Registers \,
r115 v15;
0 vot [01 [11 [2] [VLRMAX-1]
\_ Vector Length Register [ VLR | J
4 - - - ] ™,
Vector Arithmetic ﬂ . : f : = I~
Instructions @ @ @ @ Eé ES
ADDV v3, v1, v2 ' ]

\ [VLR-1] Y
/’ vﬂ‘ctﬂr Lﬂ'ad and VEﬂtﬂf REngfEl" ‘\"
Store Instructmns |

M
\_ Base r1 Strld& emnry Vi
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SIMD Architecture

Yy ©Y
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[1 Single Instruction Multiple Data (SIMD)
[1 Central controller broadcasts instructions to multiple

processing elements (PES)
» Only requires one controller for whole array
» Only requires storage for one copy of program
» All computations are fully synchronized
[1 Recent return to popularity
» GPU (Graphics Processing Units) have SIMD properties
» However, also multicore behavior, so mix of SIMD and MIMD (more later)

[0 Dual between Vector and SIMD execution =59 #raurf 5
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Pseudo SIMD: (Poor-Man’s SIMD?)

Scalar processing + SIMD processing (Intel)
- traditional mode - with SSE / SSE2
- one operation produces - one operation produces
one result multiple results

Slide Source: Alex Klimovitski & Dean Macri, Intel Corporation

uny FrAELF 5
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E.g.. SSE / SSE2 SIMD on Intel

[0 SSEZ2 data types: anything that fits into 16 bytes, e.g.,

4x floats

2x doubles

16X bytes

[ Instructions perform add, multiply etc. on all the data in this 16-byte
register in parallel

[0 Challenges

» Need to be contiguous in memory and aligned

» Some instructions move data from one part of register to another
1 Intheory, the compiler understands all of this

» When compiling, it will rearrange instructions to get a good “schedule” that
maximizes pipelining, uses FMAs and SIMD

» It works with the mix of instructions inside an inner loop or other block of code
[0 Butin practice the compiler may need your help

iy FrAHELF 5
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General-Purpose GPUs (GP-GPUs)

| B
=

[0 In 2006, Nvidia introduced GeForce 8800 GPU supporting a new
programming language: CUDA
» Compute Unified Device Architecture
» OpenCL is a vendor-neutral version of same ideas

[1 Idea: Take advantage of GPU computational performance and memory
bandwidth to accelerate some kernels for general-purpose computing

[1 Attached processor model: Host CPU issues data-parallel kernels to GP-

GPU for execution unl FrA#ExT o3



Parallel architecture

MULTITHREADING:
INCLUDING PTHREADS

il FrHELT oy
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Thread Level Parallelism (TLP)

[

[

ILP exploits implicit parallel operations within a loop or
straight-line code segment

TLP explicitly represented by the use of multiple threads of

execution that are inherently parallel
» Threads can be on a single processor
» Or, on multiple processors

Concurrency vs Parallelism

» Concurrency is when two tasks can start, run, and complete in
overlapping time periods. It doesn't necessarily mean they'll ever both
be running at the same instant
* Forinstance, multitasking on a single-threaded machine

» Parallelism is when tasks literally run at the same time, eg. on a
multicore processor

Goal: Use multiple instruction streams to improve
» Throughput of computers that run many programs
» Execution time of multi-threaded programs

g Fra#xT o
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Common Notions of Thread Creation

+ cobegin/coend

cobegin » Statements in block may run in parallel
jobl(al); » cobegins may be nested
job2(a2) ; » Scoped, so you cannot have a missing coend
coend
fork/join
tidl = fork(jobl, al); |° Forked procedure runs in parallel
job2 (a2) ; » Wait at join point if it's not finished
join tidl;
fUTUFE’ » Future expression possibly evaluated in paraliel
= future(jobl(al)): |. Attemptto use return value will wait
.= LWL

[1 Threads expressed in the code may not turn into independent

computations
» Only create threads if processors idle
» Example: Thread-stealing runtimes such as cilk

il FrHELT 50
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Overview of POSIX Threads

[1 POSIX: Portable Operating System Interface for UNIX
» Interface to Operating System utilities

[1 Pthreads: The POSIX threading interface
» System calls to create and synchronize threads

» Should be relatively uniform across UNIX-like OS platforms
» Originally IEEE POSIX 1003.1c

[1 Pthreads contain support for
» Creating parallelism
» Synchronizing

» No explicit support for communication, because shared memory is
iImplicit; a pointer to shared data is passed to a thread

 Only for HEAP! Stacks not shared

iy FrHELF o
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Forking POSIX Threads

Signature:

Int pthread_create(pthread t *,
const pthread_attr_t *,
void * (*)(void %),
void *);

Example call:
errcode = pthread _create(&thread id; &thread_attribute; &thread fun; &fun_arg);

L
L

thread id is the thread id or handle (used to halt, etc.)

thread attribute various attributes
» Standard default values obtained by passing a NULL pointer
» Sample attribute: minimum stack size

thread fun the function to be run (takes and returns void*)

fun_arg an argument can be passed to thread fun when it
starts

errorcode will be set nonzero if the create operation fails
iy FrasELY o8
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Simple Threading Example (pThreads)

void* SayHello (void *foo) { E.g., compile using gcc -Ipthread
printf( "Hello, world!\n" );
return NULL;

}

int main() {
pthread t threads[16];
int tn;
for(tn=0; tn<l6; tn++) {
pthread create(&threads[tn], NULL, SayHello, NULL);

}
for(tn=0; tn<lé ; tn++) {

pthread join(threads([tn], NULL);
}

return 0;

ﬁ#“f’f’”ﬁkﬁ 29
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Shared Data and Threads

[l
[l

Variables declared outside of main are shared

Objects allocated on the heap may be shared (if pointer is
passed)

Variables on the stack are private: passing pointer to these
around to other threads can cause problems

Often done by creating a large “thread data” struct, which is
passed into all threads as argument

char *message = "Hello World!\n*;

pthread create(&threadl, NULL,
print_fun,(void*) message);
il Fra#ELT 30
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Loop Level Parallelism

[1 Many application have parallelism in loops

double stuff [n][n];
for (inti=0;i<n;i++)
for (intj=0;j<n;j++)
... pthread_create (..., update_stuff, ..., &stuff[i][j]);

[1 But overhead of thread creation is nontrivial
» update_stuff should have a significant amount of work

[1 Common Performance Pitfall: Too many threads

» The cost of creating a thread is 10’s of thousands of cycles on
modern architectures

» Solution: Thread blocking: use a small # of threads, often equal to the
number of cores/processors or hardware threads

gy Franxt 5
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Thread Scheduling

[1 Once created, when will a given thread run?
» Itis up to the operating system or hardware, but it will run eventually,
even if you have more threads than cores
» But-scheduling may be non-ideal for your application
[0 Programmer can provide hints or affinity in some cases
» E.qg., create exactly P threads and assign to P cores
[1 Can provide user-level scheduling for some systems
» Application-specific tuning based on programming model

ﬁ#’*ﬁﬁkff 32
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Multithreaded Execution

[1 Multitasking operating system
» Gives “lllusion” that multiple things happen at same time
» Switches at a coarse-grained time (for instance: 10ms)

[l Hardware Multithreading: multiple threads share processor

simultaneously (with little OS help)

» Hardware does switching
« HW for fast thread switch in small number of cycles
 much faster than OS switch which is 100s to 1000s of clocks

» Processor duplicates independent state of each thread
* e.g., aseparate copy of reqgister file, a separate PC, and for running
independent programs, a separate page table

» Memory shared through the virtual memory mechanisms, which already
support multiple processes
[1 When to switch between threads?
» Alternate instruction per thread (fine grain)
» When a thread is stalled, perhaps for a cache miss, another thread can

be executed (coarse grain) S Frakd
uii #RAT 33
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What about combining ILP and TLP?

[1 TLP and ILP exploit two different kinds of parallel structure in
a program

[0 Could a processor oriented at ILP benefit from exploiting TLP?

>

>

>

functional units are often idle in data path designed for ILP because of
either stalls or dependences in the code

TLP used as a source of independent instructions that might keep the
processor busy during stalls

TLP be used to occupy functional units that would otherwise lie idle
when insufficient ILP exists

[1 Called “Simultaneous Multithreading”

>

Intel renamed this “Hyperthreading”

iy FraELY 54
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Quick Recall: Many Resources IDLE!
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Simultaneous Multi-threading

One thread, 8 units Two threads, 8 units
Cycle M M FX FX FP FP BRCC Cycle M M FX FX FP FP BRCC

1

2

3

M = Load/Store, FX = Fixed Point, FP = Floating Point, BR = Branch, CC = Condition Codes
””9 FranL¥ 36



Power5 Dataflow

—— namic
Branch prediction ‘ igmmion

i T = selection
b Shared Shared
Program Branch| [ Retun| | Target 88118 execution
counter history stack cache queues units
tables e

j e 1777 [LSUg) Data Dala
_J%ﬂy T !.'_".:'_':':':_l-_ :L.:‘_::‘.'.J = - [Fxuol - Transiation Cache
| im@;n oy - | | ( | | [sud]

I : Group formation i oo - : s
“ﬂ"éﬁt&m Instruction decode [—= +  —= 1 —= l—=1 — [FXUll_., Gm@ Stora
[ . S , 5 g 7 m b completion QuUELUE
PR— [],spaich mrT ; l Lo Gl L F_PLU_U
transiation ' / [FPU1| ﬁ
: | | / | BXU |
Thread @LJ Data Data
priorty Shared- Read = Wrile translation | |cacha
register shared- shared- i_
mappers register files register files 1o
cache

| [ 18hared by two threads [ Thread 0 resowrces [ Thread 1 resources |

1 Why only two threads?

» With 4, one of the shared resources (physical registers, cache,
memory bandwidth) would be prone to bottleneck

[1 Cost

» The Power5 core is about 24% larger than the Power4 core because
of the addition of SMT (Simultaneous Multi-threading) support

iy FrAELT 55
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Parallel architecture

UNIPROCESSOR MEMORY
SYSTEMS

iy Fra#LF 38
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Limiting Force: Memory Wall

Performance
(1/latency) CPU
4000 v 60% per yr
2Xin1.5yrs
A00 \
Gap grew > 50%
per year
A0 DRAM
. 5.5-7% per
= e yr
2980 RS 200%2X in 10 yrs
Year

[l How do architects address this gap?
» Put small, fast “cache” memories between CPU and DRAM (Dynamic
Random Access Memaory).
» Create a “memory hierarchy”

il Fr#EL¥ 59
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Principle of Locality

L1 Principle of Locality

» Program access a relatively small portion of the address space at any
iInstant of time

[1 Two Different Types of Locality

» Temporal Locality (Locality in Time): If an item is referenced, it will
tend to be referenced again soon (e.g., loops, reuse)

» Spatial Locality (Locality in Space): If an item is referenced, items
whose addresses are closeby tend to be referenced soon (e.g.,
straightline code, array access)

1 Last 25 years, HW relied on locality for speed

wnp Fra#xT 4o
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Programs with locality cache well

Memory Address (one dot per access)

B ~__~ BadTocality behavior

3%

- R - Rk -

mrJIEHMPﬁERMEEﬂﬂ!?!EE R FEmErpE e
A T e e T e T SR e T Ry
= T VRN E e s A R e R e i .llnlll.ﬂ;" i

18 it

Donald J. Hatfield, Jeanette Gerald: Program
Restucturing for Virtual Memorv. IBM Svstems Journal

10(3): 168-192
S FrARET 4
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Memory Hierarchy

[1 Take advantage of the principle of locality to
» Present as much memory as in the cheapest technology
» Provide access at speed offered by the fastest technology

Processor

Control

Datapath

Speed (ns): 1s 10s-100s 100s 10,000,000s 10,000,000,000s
(10s ms) (10s sec)

Size (bytes): 100s Ks-Ms Ms Gs Ts



Memory Hierarchy

| MECHANICAL
: HARD DRIVES

PROCESSOR
REGISTER

CPU CACHE

SUPER FAST |
SUPER EXPENSIVE |
TINY CAPACTTY |

LEVEL 1 (1) CACHE
LEVEL 2(L2) CACHE
LEVEL 3({[3) CACHE

PHYSICAL MEMDRY

RANDOM ACCESS
MEADRY [RAM)

SOLID STATE MENMDRY
NON-VOLATILE FLASH-BASED MEMORY

FASTER |
EXPENSIVE |
SMALL CAPACTTY |

FAST
PRICED REASONRABELY |
AVERAGE CAPACITY X

____________ .
I

PRICED REASONABLY |
AVERAGE CAPACITY I

sLow |
CHEAP I
LARGE l::.ll'-lm:’l::I‘i'E:!'J

g FrH#xT 4
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Example of Modern Core: Nehalem

| ;_Shér"ed 3 Cache

1 ON-chip cache resources
» For each core: L1: 32K instruction and 32K data cache, L2: 1MB, L3:
8MB shared among all 4 cores

[ Integrated, on-chip memory controller (DDR3)
wnp Fra#xt 44



SCTS é‘

Memory Hierarchy: Terminology

O

Hit: data appears in some blocks in the upper level (example:
Block X)

» Hit Rate: the fraction of memory access found in the upper level
» Hit Time: Time to access the upper level which consists of
RAM access time + Time to determine hit/miss

Miss: data needs to be retrieve from a block in the lower level
(Block Y)
» Miss Rate = 1 - (Hit Rate)

» Miss Penalty: Time to replace a block in the upper level + Time to deliver
the block the processor

Hit Time << Miss Penalty (500 instructions on 21264!)

Lower LETE]I

To Processor Upper Level Memory
Memory
Blk X
From Processor R BIk Y
|| D FraELT 45
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Impact of Hierarchy on Algorithms

[l Today CPU time is a function of (ops, cache misses)

[1 What does this mean to compilers, data structures, algorithms?

» Quicksort: fastest comparison based sorting algorithm when keys fit in
memory

» Radix sort: also called “linear time” sort. For keys of fixed length and
fixed radix a constant number of passes over the data is sufficient
Independent of the number of keys

[1 “The Influence of Caches on the Performance of Sorting” by A.
LaMarca and R.E. Ladner. Proceedings of the Eighth Annual
ACM-SIAM Symposium on Discrete Algorithms, January, 1997,
370-3709.

» For Alphastation 250, 32 byte blocks, direct mapped L2 2MB cache, 8
byte keys, from 4000 to 4000000

wnp Fra#xT 46
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Experimental Study (Membench)

Microbenchmark for memory system performance

4l =
-

S

for array A of length L from 4KB to 8MB by 2x
for stride s from 4 Bytes (1 word) to L/2 by 2x 1 experiment
time the following loop
(repeat many times and average)
forifromOtolL by s
load A[i] from memory (4 Bytes)

g FrH#xT 4
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Membench: What to Expect

average cost per access

} memory
BENNNNNNEND ™
B N N N N
l . [} size > L1

cache total size < L1

=

hit time

5 = siride

[1 Consider the average cost per load

» Plot one line for each array length, time vs. stride

» Small stride is best: if cache line holds 4 words, at most ¥4 miss

» If array is smaller than a given cache, all those accesses will hit (after
the first run, which is negligible for large enough runs)
Picture assumes only one level of cache

» Values have gotten more difficult to measure on modern procs
"”; FraunL¥ 48
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Memory Hierarchy on a Sun Ultra-2i

Sun Ultra-21, 333 MHz

SCS

_/cGecL

Array length
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I 1
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8 K pages,
32 TLB entriea_

G4k

256K

-

1M 2M aM BM 1eMazm LT

16 KB
2 cycles (Bns)

See www.cs.berkeley.edu/~yelick/arvindk/t3d-isca95,ps for details
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Memory Hierarchy on a Power3

Power3, 375 MHz

= ]

Saavedra-Barera Benchmark: Timg to execute 1 load [Powerd] Array size
|- A !.._."‘ . I ........ 1 — 4HE

Mem: 396 ns AR SR N O o 00 AP SNNN SU S S| - ke
(132 cycles) I B . EPTIR ety e o o v KB

L2: 8 MB BEEEY AR
128 B line .f

9 cycles

L1: 32 KB
128B line 10°
.5-2 cycles

...........................................

BB 328 1288 512B 2KB G8KB 32fB 128KB 512KB ZMB 8MB 3ZMB
Stride
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Memory Hierarchy Lessons

[1 Caches vastly impact performance

>

Cannot consider performance without considering memory hierarchy

[1 Actual performance of a simple program can be a complicated
function of the architecture

>

>

Slight changes in the architecture or program change the performance
significantly

To write fast programs, need to consider architecture

 True on sequential or parallel processor

We would like simple models to help us design efficient algorithms

gy Fra#nxt 5
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Memory Hierarchy Lessons

[1 Common techniqgue for improving cache performance, called
blocking or tiling

» ldea: used divide-and-conquer to define a problem that fits in
register/L1-cache/L2-cache

[1 Autotuning: Deal with complexity through experiments

» Produce several different versions of code
« Different algorithms, Blocking Factors, Loop orderings, etc
» For each architecture, run different versions to see which is fastest

» Can (in principle) navigate complex design options for optimum

gy Fra#nxt 5



New Advances on Memory and Storaget® éﬁ
—Storage Class Memory

&

Price
$/GB

DRAM getting

Faster (to feed faster CPUs) &
Larger (to feed Multi-cores &
Multi-VMs from Virtualization)

SSD segmenting into

SATA * PCle SSD Cache
SSD - as backend to DRAM &
« SATA SSD

- as front end to HDD

HDD becoming
¥ Cheaper, not faster

4

Source: IMEX Research SSD Industry Report 2011

Performance

I/O Access Latency 3
Ll > /J



Reconstruction of Virtual Memory Archite%ﬁ?';e:'é‘&
Break the I/O Bottleneck

Lﬂﬂiﬂ- Memory Active Storage Archival

1980 | CPU

2008 CPU

2013 | CPU -

rm? CPU 1

ol FERELE S,
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New In-Memory Computing Architecture

Traditional Data Access Architecture

D

Disk

R
A
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Oracle EXADATA

Database Grid

» 8 Dual-processor x64
database servers

OR

- 2 Eight-processor x64
database servers

Intelligent Storaqge Grid

» 14 High-performance low-cost
storage servers

AIRERANENNENRREEND
NN RN REE NN AR

Nl g o wrr e

or
336 TB High Capacity disk

5.3 TB PCI Flash

*Data mirrored across storage
servers

InfiniBand Network

» Redundant 40Gb/s switches

- Unified server & storage
network

ﬁ#’*ﬁfﬁkff 56
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Parallel architecture

WHAT IS PARALLEL
ARCHITECTURE

gy Fra#nxt 5
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What i1s Parallel Architecture?

Machines with multiple processors

Hadoop cluster ot Yahoa!

ﬁ#“f’f’”ﬁkff 58
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One Definition of Parallel Architecture

A parallel computer is a collection of processing
elements that cooperate to solve large problems fast

Some broad issues

[1 Resource Allocation
» how large a collection?
» how powerful are the elements?
» how much memory?

[1 Data access, Communication and Synchronization
» how do the elements cooperate and communicate?
» how are data transmitted between processors?
» what are the abstractions and primitives for cooperation?
[l Performance and Scalability

» how does it all translate into performance?
» how does it scale?

g Fra#nxT 5o



Types of Parallelism

«— Time (processor cycle)

SCTS gL

Simultaneous _ _
Fine-Grained Coarse-Grained Multithreading Multiprocessing

NN

Superscalar
10 10
I
] [
] 2l i )
i
1] [ N
Ol NININ
O
|
I )
] N
B Thread 1 Thread 3
Thread 2 Thread 4

B Thread 5

|dle slot
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Parallel architecture

A PARALLEL ZOO OF
ARCHITECTURES

unp Fr#ELY 6
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MIMD Machines

O

Multiple Instruction, Multiple Data (MIMD)

» Multiple independent instruction streams, program counters, etc

» Called “multiprocessing” instead of “multithreading”
» Although, each of the multiple processors may be multithreaded

» When independent instruction streams confined to single chip,
becomes a “multicore” processor

Shared memory: Communication through Memory

» Option 1. no hardware global cache coherence

» Option 2: hardware global cache coherence

Message passing: Communication through Messages

» Applications send explicit messages between nodes in order to
communicate

For most machines, shared memory built on top of message-

passing network

» Bus-based machines are “exception” )
unT Fra#xT 6
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Examples of MIMD Machines

- I
[1 Symmetric Multiprocessor ° 0 0 °
» Multiple processors in box with shared —

memory communication
» Current MultiCore chips like this
» Every processor runs copy of OS

[1 Non-uniform shared-memory with

separate 1/O through host

» Multiple processors
 Each with local memory
* general scalable network

» Extremely light “OS” on node provides
simple services
e Scheduling/synchronization

» Network-accessible host for 1/O

[1 Cluster
» Many independent machine connected
with general network
» Communication through messages
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Cray T3E (1996)

Follow-on to earlier T3D (1 993) using 21064's
Up to 2,048 675MHz Alpha 21164 processors connected in 3D torus

. Air cooled T3E
Architecture of —
orus

C]"ay T3E Communication

Network

L

Alpha SLPCAM S
21164 . Coamntiral
L-Rep .
S e
F] 64 MB 1g #"ﬁ_ﬁﬁ -
L, 26D [ LITRmIE R
-— — B i -
= Ramter L, 'ﬁ-!.!'ﬁiiﬂ‘ﬁ.s =4
~— — B = o
i s

e

FrasLt 6

T3E Node with Digital Alpha Chip
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Cray T3E (1996)

Each node has 256MB-2GB local DRAM memory

Load and stores access global memory over network

Only local memory cached by on-chip caches

Alpha microprocessor surrounded by custom “shell” circuitry
to make it into effective MPP node

Shell provides

O O000

>
>

>
>

multiple stream buffers instead of board-level (L3) cache

external copy of on-chip cache tags to check against remote writes to
local memory, generates on-chip invalidates on match

512 external E registers (asynchronous vector load/store engine)
address management to allow all of external physical memory to be
addressed

atomic memory operations (fetch&op)

support for hardware barriers/eureka to synchronize parallel tasks

il Fr#ELT 65
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Cray XT5 (2007)

“ W

Vector Node

‘# ™

-

Basic 4-way SMP of
Compute T SX2 Vector CPUs
Node, with I y (8 lanes each)
2 AMD x86 i
Onpterons . [
— | =(-. i Reconfigurable
| g lﬁ E Lo ictl:hde
Cray SeaStar2+ IR - g
Architecture !i TFPGAs -
S 0 Opteron
Cay
SenSlude
IETE e e

noge Also, XMT Multithreaded
F".._EI--:rur Nodes based on MTA
| Interface Procs design (128 threads per
processor)

Processor plugs into

wnp Fra#xT 66
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Sun Starfire UE10000 (1997)

Up to 64-way SMP using bus-based snooping protocol

4 processors + memory
P | WP [ BP (WP || WP | i [HP || WP || BP [ WP | module per system

FESESEINHF BRI NE NI

FIFTTTET FITITI91; “Baduaans
Board Interconnect | : : [ Board Interconnect | : protocol

| 1 R

16x16 Data Crossbar

I 1 \ Separate data

Memory Memory transfer over
Module Module high bandwidth
St J crossbar
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SGI Origin 2000 (1996)

* Large-Scale Distributed
Directory SMP
- Scales from 2 to 512 nodes

- Direct-mapped directory with each
bit standing for multiple processor

- Not highly scalable beyond thi

Mode

Mxde

F:mnnﬂ R 0000
!

Cache

Direciony
Main
Marrery

Node contains:
« Two MIPS R10000 processors plus caches
* Memory module including directory
« Connection to global network
« Connection to I/O

HUB

A0 =

M oclule

Scalable hypercube switching network
supports up to 64 two-processor nodes (128
processors total)

(Some installations up to 512 processors)

‘ Ml

b

Fouter

CraylLink
LT

ocdule

Router

[

Hatar

3

3
CrayLink Intenconnact

$

Aower

lF’muh!r

4
‘ ‘ I".IIC-dLlIEll

1
\- Module

Feuter
fboclule
4 E
Riowrter

Pt Libe
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MIT Alewife Multiprocessor: SM &

Alewife-1000 CMMU

i 'l = - - i | sy

e aurduy asuassgesy
&5 Jaanpayag Aoy

E ! FLR
T L L L

B A 0w
"—"‘"_"_I__‘-'.‘l’l Z'.'ZB;_!."-”'.‘..’ R S

T I RN

o o o e [] - Cache-coherence Shared Memory
{3y Memory wnd o Registers aad gy 1P| Message

A ol i 7% S » Partially in Software!

» Sequential Consistency
» LImItLESS cache coherence for better scalability
[0 User-level Message-Passing
» Fast, atomic launch of messages
» Active messages
» User-level interrupts
[0 Rapid Context-Switching
» Course-grained multithreading
[0 Single Full/Empty bit per word for synchronization
» Can build locks, barriers, other higher-level constructs




Message Passing MPPs SCTS (ooe

(Massively Parallel Processors)

L1 Initial Research Projects
» Caltech Cosmic Cube (early 1980s) using custom Mosaic processors
» J-Machine (early 1990s) MIT
[1 Commercial Microprocessors including MPP Support
» Transputer (1985)
» NnCube-1(1986) /nCube-2 (1990)

[1 Standard Microprocessors + Network Interfaces

» Intel Paragon/i860 (1991) Interconnect Network

> TMC CM-5/SPARC (1992) T
» Meiko CS-2/SPARC (1993) RIETRIETRIE TR TR TR TR
> 1BM SP-1/POWER (1993) F T 1T 1 T 111
1 MPP Vector Supers el wpllwe |l wp !l wp !l wp | wp

» Fujitsu VPP500 (1994)

' | T A A A R
e S e nodes " Mem| Mo} Mer Mo} Mar Mor M er
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MIT J-Machine (Jelly-bean machine)

ET y:

‘ . ..
Jﬁmsﬁim H'ﬁ"" h,

O 3-dimensional network topology
» Non-adaptive, E-cubed routing
» Hardware routing
» Maximize density of communication

[0 64-nodes/board, 1024 nodes total

[l Low-powered processors
» Message passing instructions
» Associative array primitives to aid in synthesizing shared-address space
[1 Extremely fine-grained communication
» Hardware-supported Active Messages ﬁ FrA#H1 Y
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IBM Blue Gene/L Processor

:
A
A2HSA2K L1 “
o
PPC 440
cPuU
an
o
Double-issue o
FPU O
o
Snoop i §
|
WKIAK L | o - ()
- =Y
PPC 440
CPU
Double-issue
FPU
1
[ L
Ethemat JTAG Torus Collactive Global
Gbit ACCESS imermupt/
lockbox
Gigabit IEEE 6 out and 3 out and 4 global
Etramat 11401 Gineachat 3in ecachat bamiors or
(WJTAG) 1.4 GBsec 2.8 GB/sec intermupts

" - iy FrHELF 5
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BG/L 64K Processor System
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SCS

42nd TOP500 on November 18, 2013

Rank #

10

Rmax

Rpeak

(Pflops)
33.863
54.902

17.590
27.113

17.173
20.133

10.510
11.280

8.586
10.066

6.271
7.779

5.168
8.520

5.008
5.872

4.293
5.033

2.897
3.185

% Name +#

Tianhe-2

Titan

Sequoia

K computer

Mira

Piz Daint

Stampede

JUQUEEN

Vulcan

SuperMUC

Computer design
Processor type, interconnect

a2 NUDT
Xeon E5-2692 + Xeon Phi 31S1P, TH Express-2

Cray XK7 Cra
Opteron 6274 + Tesla K20X, Cray Gemini Interconnect y
Blue Gene/Q IBM
PowerPC A2, Custom

RIKEN Euil
SPARC64 VIlifx, Tofu ditsu
Blue Gene/Q IBM
PowerPC A2, Custom

Cray XC30 Crav |
Xeon E5-2670 + Tesla K20X, Aries ray Inc.
PowerEdge C8220 Dell
Xeon E5-2680 + Xeon Phi, Infiniband

Blue Gene/Q IBM
PowerPC A2, Custom

Blue Gene/Q IBM
PowerPC A2, Custom

iDataPlex DX360M4 IBM

Xeon E5-2680, Infiniband

% Vendor &

Site
Country, year

¢ Operating system ¢

National Supercomputing Center in Guangzhou

China, 2013

Oak Ridge National Laboratory
= United States, 2012

Lawrence Livermore National Laboratory
= United States, 2013

RIKEN
® Japan, 2011
Argonne National Laboratory
= United States, 2013
Swiss National Supercomputing Centre
Switzerland, 2013
Texas Advanced Computing Center
= United States, 2013

Forschungszentrum Jiilich
N Germany, 2013

Lawrence Livermore National Laboratory
E= United States, 2013

Leibniz-Rechenzentrum
B Germany, 2012

Linux (Kylin)

Linux (CLE, SLES based)

Linux (RHEL and CNK)

Linux

Linux (RHEL and CNK)

Linux (CLE)

Linux

Linux (RHEL and CNK)

Linux (RHEL and CNK)

Linux

gy Franxt 4
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Proprietary high-
speed network

Dual Gigabit LAN

1 1
GE

16X PCIE I

NIC

CPU

16X PCIE

16X PCIE :
e

CPU

Co-
processor

16X PCIE
EEmmmm——

Tianhe-2
Sponsors 863 Program
Location Guangzhou, China

Architecture Intel Xeon E5, Xeon Phi

Power 17.6 MW (24 MW with cooling)

Operating  Kylin Linux(']

system

Memory 1,375 TiB (1,000 TiB CPU and
375 TB Coprocessor)“]

Storage 12.4 PB

Speed 33.86 PFLOPS

Cost 2.4 billion Yuan (390 million
usD)2l

Purpose Research and education

iy FrHELT o5
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Rack 63

32 Compute noi de 32 Computemde 32 Compute node te node
TIVTIENTT CTERAvATL (ITTve T T 1Tl T T TIITTUONT TINTRNT THOTATTS TYAOTAT

LRSI il | (DR Il 1L I Ll (LIRS LR LR L PR
32 Compu de 32 Cmpute Ge 32(3 ompute node JZCmputc lmde nCompuw od 32Com ul:enode

Rack 0 Rack 62
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Parallel architecture

MULTICORE CHIPS
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Parallel Chip-Scale Processors

Shared L3 Cache . -

Intel Core 2 Quad: 4 Cores AMD Obpteron: 6 Cores
[1 Multicore processors emerging in general-purpose market due

to power limitations in single-core performance scaling
» 4-16 cores in 2009, connected as cache-coherent SMP
» Cache-coherent shared memory

[0 Embedded applications need large amounts of computation
» Recent trend to build “extreme” parallel processors with dozens to
hundreds of parallel processing elements on one die
» Often connected via on-chip networks, with no cache coherence
» Examples: 188 core “Metro” chip from CISCO ol FranxE s




Sun’s T1 (“Niagara”)

] Highly Threaded
» 8 Cores
» 4 Threads/Core

L] Target: Commercial server

applications

» High thread level parallelism (TLP)
« Large numbers of parallel client requests

» Low instruction level parallelism (ILP)
* High cache miss rates
* Many unpredictable branches
* Frequent load-load dependencies

L1 Power, cooling, and space are major concerns for data centers
L1 Metric: Performance/Watt/Sq. Ft.
L1 Approach: Multicore, Fine-grain multithreading, Simple
Ipeline, Small L1 caches, Shared L2
PP upl FrREXTE 59
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T1 Fine-Grained Multithreading

[

H

Each core supports four threads and has its own level one

caches (16KB for instructions and 8 KB for data)

» Coherency is enforced among the L1 caches by a directory associated
with each L2 cache block

Switching to a new thread on each clock cycle
|dle threads are bypassed in the scheduling

» Waiting due to a pipeline delay or cache miss
» Processor is idle only when all 4 threads are idle or stalled

Both loads and branches incur a 3 cycle delay that can only
be hidden by other threads
A single set of floating-point functional units is shared by all 8

cores

» floating-point performance was not a focus for T1
» (New T2 design has FPU per core)

il Fr#ELT 8o
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Embedded Parallel Processors

[1 Often embody a mixture of old architectural styles and ideas

[1 Exposed memory hierarchies and interconnection networks

» Programmers code to the “metal”’ to get best cost/power/performance
» Portability across platforms less important

[1 Customized synchronization mechanisms

» Interlocked communication channels (processor blocks on read if data
not ready)

» Barrier signals

» Specialized atomic operation units

1 Many more, simpler cores

unp FrHELY 5
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[CACHE
[ : |
[ Y !:;_2.\ Clustar
| } Instruction| ™
L — -'-r —d MEI’I’IQF‘!{ Tmsirmrd|om
l irmiueion s Mrimery
32-bit RISC Pt Diseioulon

Processor Core

* R g%
e N B -
K «-—E ros | Cluste 188 usable RISC-like cores

P scanpad DMA [1—{Mux unit in 130nm

DATA Mem

PPE

T Rasounas
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IBM Cell Processor (Playstation-3)

SPF SPE SPE SPT SPT apr SPr SPF
SPU - SPU SPU SPU PU =PU sPU SPU
w128 | (w128 (wii2y [wi128 (wi128 {wii2s (w128 (w128
)3t 178-bet N 28-bit 128 bt 126-it 12 128-bit 125t
Feimiers) TR reguslers ) ngisters) rEgsiers) regslers) regsiers negedes ) |
: : T — w
1.7 GRS 5.2 Ol $1.7 Cil'w S1.F Cilk/a £1.2 O1fa 51 3 G 1.7 Gil's .7 GRS
_ v v
: LS LS 1= | LS LS LS LS x| .
(2% KH) {286 KH)| 256 KB) 156 KB) {2% KB) (156 KB) (2% KH) (2% KH)| .
1 X i I ' ' s #
| | 156cEs 256 GB/s 256 GB/s 156 GBs 15.6 GBs 256 GB/s 256 GB/s 255 GBS
256 OBfs 3.6 0GR DEOBE | 5 156 OB/ 560BA| 5 1560BS 256 GB/s | 5.6 OB/
EIB {204.5 GBs) _
< : 25.6 GB/s | Beces 256 GBS
Added valbue of ¢ 156GBH M6GB/ | ¢ 236GBs
CaellVB.E. compute ¢ !
pemerand besds ] e

s208i"t g $13 G 1 1 |

| L1 (32 KH 1D} |

;1 256 LS
’ %1.2 OBA
i [erurvacs |

compuitatian 25 GHA 35 0B
FPFE Py
BIF and VO

One 2-way threaded PowerPC core (PPE), plus eight specialized short-

SIMD cores (SPE)
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Nvidia G8800 Graphics Processor

[0 Thisis a GPU (Graphics Processor Unit)
» Available in many desktops
[0 Example: 16 cores similar to a vector processor with 8 lanes (128 stream
processors total)
» Processes threads in SIMD groups of 32 (a “warp”)
» Some stripmining done in hardware
[0 Threads can branch, but loses performance compared to when all threads
are running same code
[0 Complete parallel programming environment (CUDA)
» Alot of parallel codes have been ported to these GPUs
» For some data parallel applications, GPUs provide the fastest implementations

wnp Fra#nxt gy



Nvidia Fermi GF100 GPU

[Nvidia, 2010]

i, e en. | —— i, i, | | e . e . e i, —— s
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Nvidia Tesla K40 GPU




Nvidia Tesla GPU

TECHNICAL SPECIFICATIONS

i |

SCTS éé_

TESLA K20X TESLA K20 TESLA K10!

Peak double-precision floating point 1.43 Tflops 1.31 Tflops 1.17 Tflops 0.19 Tflops
performance (board)
Peak single-precision floating point 4.29 Tflops 3.95 Tflops 3.52 Tflops 4.58 Tflops
performance (board)
Number of GPUs 1 x GK110B 1 x GK110 2 x GK104s
Number of CUDA cores 2,880 2,688 2,496 2x 1,536
Memory size per board (GDDR5) 12 GB 6 GB 5GB 8 GB
Memory bandwidth for board (ECC off)? 288 Gbytes/sec 250 Gbytes/sec 208 Gbytes/sec 320 Gbytes/sec
Architecture features SMX, Dynamic Parallelism, Hyper-Q SMX
System Servers and Servers Servers and Servers
workstations workstations

ﬁ#“f’ﬁ’ﬂfﬁk? 87



The New Wave

[J The rate of technological
progress for networking is an
astounding 10-fold increase
every 4 years (77.8% yearly
compound rate)

[ The emergence of network-centric computing (as opposed to
processor-centric) —distributed high performance/throughput
computing
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