
Parallel Programming Principle and Practice

Lecture 2 — Parallel Architecture

Jin, Hai

School of Computer Science and Technology

Huazhong University of Science and Technology

2

Outline
 Uniprocessor Parallelism
 Pipelining, Superscalar, Out-of-order execution

 Vector Processing/SIMD

 Multithreading: including pThreads

 Uniprocessor Memory Systems

 Parallel Computer Architecture
 What is Parallel Architecture?

 A Parallel Zoo Of Architectures

 Multicore Chips

3

UNIPROCESSOR
PARALLELISM

Parallel architecture

4

Parallelism is Everywhere
 Modern Processor Chips have ≈ 1 billion transistors

 Clearly must get them working in parallel
 Question: how much of this parallelism must programmer understand?

 How do uniprocessor computer architectures extract
parallelism?
 By finding parallelism within instruction stream
 Called “Instruction Level Parallelism” (ILP)
 The theory: hide parallelism from programmer

5

Parallelism is Everywhere
 Goal of Computer Architects until about 2002:

 Hide Underlying Parallelism from everyone: OS, Compiler,
Programmer

 Examples of ILP techniques
 Pipelining: Overlapping individual parts of instructions
 Superscalar execution: Do multiple things at same time
 VLIW: Let compiler specify which operations can run in parallel
 Vector Processing: Specify groups of similar (independent) operations
 Out of Order Execution (OOO): Allow long operations to happen

6

PIPELINING, SUPERSCALAR,
OUT-OF-ORDER EXECUTION

Parallel architecture

7

What is Pipelining?
Dave Patterson’s Laundry example: 4 people doing laundry
wash (30 min) + dry (40 min) + fold (20 min) = 90 min Latency

• In this example:
– Sequential execution takes

4 * 90min = 6 hours
– Pipelined execution takes

30+4*40+20 = 3.5 hours
• Bandwidth = loads/hour

– BW = 4/6 l/h w/o pipelining
– BW = 4/3.5 l/h w pipelining
– BW <= 1.5 l/h w pipelining,

more total loads
• Pipelining helps bandwidth but not
latency (90 min)
• Bandwidth limited by slowest pipeline
stage
• Potential speedup = Number of pipe
stages

8

5 Steps of MIPS Pipeline

9

Visualizing The Pipeline

 In ideal case: CPI (cycles/instruction) = 1!
 On average, put one instruction into pipeline, get one out
 Superscalar: Launch more than one instruction/cycle
 In ideal case, CPI < 1

10

Limits to Pipelining
 Overhead prevents arbitrary division

 Cost of latches (between stages) limits what can do within stage
 Sets minimum amount of work/stage

 Hazards prevent next instruction from executing during its
designated clock cycle
 Structural hazards: Attempt to use the same hardware to do two

different things at once
 Data hazards: Instruction depends on result of prior instruction still in

the pipeline
 Control hazards: Caused by delay between the fetching of

instructions and decisions about changes in control flow (branches
and jumps)

 Superscalar increases occurrence of hazards
 More conflicting instructions/cycle

11

Data Hazard: Must go Back in Time?

 Data dependencies between adjacent instructions
 Must wait (“stall”) for result to be done (No “back in time” exists!)
 Net result is that CPI > 1

 Superscalar increases frequency of hazards

12

Out-of-Order (OOO) Execution
 Key idea: Allow instructions behind stall to proceed

 Out-of-order execution → out-of-order completion
 Dynamic Scheduling Issues from OOO scheduling

 Must match up results with consumers of instructions
 Precise Interrupts

DIVD
ADDD
SUBD

F0,F2,F4
F10,F0,F8
F12,F8,F14

13

Modern ILP
 Dynamically scheduled, out-of-order execution

 Current microprocessors fetch 6-8 instructions per cycle
 Pipelines are 10s of cycles deep → many overlapped instructions in

execution at once, although work often discarded

 What happens
 Grab a bunch of instructions, determine all their dependences,

eliminate dep’s wherever possible, throw them all into the execution
unit, let each one move forward as its dependences are resolved

 Appears as if executed sequentially

14

Modern ILP（Cont.）
 Dealing with Hazards: May need to guess!

 Called “Speculative Execution”
 Speculate on Branch results, Dependencies, even Values!
 If correct, don’t need to stall for result → yields performance
 If not correct, waste time and power
 Must be able to UNDO a result if guess is wrong
 Problem: accuracy of guesses decreases with number of simultaneous

instructions in pipeline

 Huge complexity
 Complexity of many components scales as n2 (issue width)
 Power consumption big problem

15

Technology Trends: Moore’s Law

Gordon Moore (co-founder of
Intel) predicted in 1965 that the
transistor density of
semiconductor chips would
double roughly every 18 months.

2X transistors/Chip Every 1.5 years

Called “Moore’s Law”

Microprocessors have
become smaller, denser,
and more powerful.

16

Limiting Forces: Clock Speed and ILP

17

VECTOR PROCESSING/SIMD
Parallel architecture

18

Vector Code Example

 Require programmer (or compiler) to identify parallelism
 Hardware does not need to re-extract parallelism

 Many multimedia/HPC applications are natural consumers
of vector processing

19

Vector Programming Model

20

SIMD Architecture

 Single Instruction Multiple Data (SIMD)
 Central controller broadcasts instructions to multiple

processing elements (PEs)
 Only requires one controller for whole array
 Only requires storage for one copy of program
 All computations are fully synchronized

 Recent return to popularity
 GPU (Graphics Processing Units) have SIMD properties
 However, also multicore behavior, so mix of SIMD and MIMD (more later)

 Dual between Vector and SIMD execution

21

Pseudo SIMD: (Poor-Man’s SIMD?)

22

E.g.: SSE / SSE2 SIMD on Intel
 SSE2 data types: anything that fits into 16 bytes, e.g.,

 Instructions perform add, multiply etc. on all the data in this 16-byte
register in parallel

 Challenges
 Need to be contiguous in memory and aligned
 Some instructions move data from one part of register to another

 In theory, the compiler understands all of this
 When compiling, it will rearrange instructions to get a good “schedule” that

maximizes pipelining, uses FMAs and SIMD
 It works with the mix of instructions inside an inner loop or other block of code

 But in practice the compiler may need your help

23

General-Purpose GPUs (GP-GPUs)

 In 2006, Nvidia introduced GeForce 8800 GPU supporting a new
programming language: CUDA
 Compute Unified Device Architecture
 OpenCL is a vendor-neutral version of same ideas

 Idea: Take advantage of GPU computational performance and memory
bandwidth to accelerate some kernels for general-purpose computing

 Attached processor model: Host CPU issues data-parallel kernels to GP-
GPU for execution

24

MULTITHREADING:
INCLUDING PTHREADS

Parallel architecture

25

Thread Level Parallelism (TLP)
 ILP exploits implicit parallel operations within a loop or

straight-line code segment
 TLP explicitly represented by the use of multiple threads of

execution that are inherently parallel
 Threads can be on a single processor
 Or, on multiple processors

 Concurrency vs Parallelism
 Concurrency is when two tasks can start, run, and complete in

overlapping time periods. It doesn't necessarily mean they'll ever both
be running at the same instant
• For instance, multitasking on a single-threaded machine

 Parallelism is when tasks literally run at the same time, eg. on a
multicore processor

 Goal: Use multiple instruction streams to improve
 Throughput of computers that run many programs
 Execution time of multi-threaded programs

26

Common Notions of Thread Creation

 Threads expressed in the code may not turn into independent
computations
 Only create threads if processors idle
 Example: Thread-stealing runtimes such as cilk

27

Overview of POSIX Threads
 POSIX: Portable Operating System Interface for UNIX

 Interface to Operating System utilities

 Pthreads: The POSIX threading interface
 System calls to create and synchronize threads
 Should be relatively uniform across UNIX-like OS platforms
 Originally IEEE POSIX 1003.1c

 Pthreads contain support for
 Creating parallelism
 Synchronizing
 No explicit support for communication, because shared memory is

implicit; a pointer to shared data is passed to a thread
• Only for HEAP! Stacks not shared

28

Forking POSIX Threads
Signature:

int pthread_create(pthread_t *,
const pthread_attr_t *,
void * (*)(void *),
void *);

Example call:
errcode = pthread_create(&thread_id; &thread_attribute; &thread_fun; &fun_arg);

 thread_id is the thread id or handle (used to halt, etc.)
 thread_attribute various attributes

 Standard default values obtained by passing a NULL pointer
 Sample attribute: minimum stack size

 thread_fun the function to be run (takes and returns void*)
 fun_arg an argument can be passed to thread_fun when it

starts
 errorcode will be set nonzero if the create operation fails

29

Simple Threading Example (pThreads)

30

Shared Data and Threads
 Variables declared outside of main are shared
 Objects allocated on the heap may be shared (if pointer is

passed)
 Variables on the stack are private: passing pointer to these

around to other threads can cause problems

 Often done by creating a large “thread data” struct, which is
passed into all threads as argument

char *message = "Hello World!\n“;

pthread_create(&thread1, NULL,
print_fun,(void*) message);

31

Loop Level Parallelism
 Many application have parallelism in loops

double stuff [n][n];
for (int i = 0; i < n; i++)

for (int j = 0; j < n; j++)
… pthread_create (…, update_stuff, …, &stuff[i][j]);

 But overhead of thread creation is nontrivial
 update_stuff should have a significant amount of work

 Common Performance Pitfall: Too many threads
 The cost of creating a thread is 10’s of thousands of cycles on

modern architectures
 Solution: Thread blocking: use a small # of threads, often equal to the

number of cores/processors or hardware threads

32

Thread Scheduling

 Once created, when will a given thread run?
 It is up to the operating system or hardware, but it will run eventually,

even if you have more threads than cores
 But-scheduling may be non-ideal for your application

 Programmer can provide hints or affinity in some cases
 E.g., create exactly P threads and assign to P cores

 Can provide user-level scheduling for some systems
 Application-specific tuning based on programming model

33

Multithreaded Execution
 Multitasking operating system

 Gives “illusion” that multiple things happen at same time
 Switches at a coarse-grained time (for instance: 10ms)

 Hardware Multithreading: multiple threads share processor
simultaneously (with little OS help)
 Hardware does switching

• HW for fast thread switch in small number of cycles
• much faster than OS switch which is 100s to 1000s of clocks

 Processor duplicates independent state of each thread
• e.g., a separate copy of register file, a separate PC, and for running

independent programs, a separate page table
 Memory shared through the virtual memory mechanisms, which already

support multiple processes
 When to switch between threads?

 Alternate instruction per thread (fine grain)
 When a thread is stalled, perhaps for a cache miss, another thread can

be executed (coarse grain)

34

What about combining ILP and TLP?
 TLP and ILP exploit two different kinds of parallel structure in

a program

 Could a processor oriented at ILP benefit from exploiting TLP?
 functional units are often idle in data path designed for ILP because of

either stalls or dependences in the code
 TLP used as a source of independent instructions that might keep the

processor busy during stalls
 TLP be used to occupy functional units that would otherwise lie idle

when insufficient ILP exists

 Called “Simultaneous Multithreading”
 Intel renamed this “Hyperthreading”

35

Quick Recall: Many Resources IDLE!
For an 8-way superscalar

From: Tullsen, Eggers,
and Levy,
“Simultaneous
Multithreading:
Maximizing On-chip
Parallelism, ISCA, 1995

36

Simultaneous Multi-threading

37

Power5 Dataflow

 Why only two threads?
 With 4, one of the shared resources (physical registers, cache,

memory bandwidth) would be prone to bottleneck
 Cost

 The Power5 core is about 24% larger than the Power4 core because
of the addition of SMT (Simultaneous Multi-threading) support

38

UNIPROCESSOR MEMORY
SYSTEMS

Parallel architecture

39

Limiting Force: Memory Wall

 How do architects address this gap?
 Put small, fast “cache” memories between CPU and DRAM (Dynamic

Random Access Memory).
 Create a “memory hierarchy”

40

Principle of Locality
 Principle of Locality

 Program access a relatively small portion of the address space at any
instant of time

 Two Different Types of Locality
 Temporal Locality (Locality in Time): If an item is referenced, it will

tend to be referenced again soon (e.g., loops, reuse)
 Spatial Locality (Locality in Space): If an item is referenced, items

whose addresses are closeby tend to be referenced soon (e.g.,
straightline code, array access)

 Last 25 years, HW relied on locality for speed

41

Programs with locality cache well

42

Memory Hierarchy
 Take advantage of the principle of locality to

 Present as much memory as in the cheapest technology
 Provide access at speed offered by the fastest technology

43

Memory Hierarchy

44

Example of Modern Core: Nehalem

 ON-chip cache resources
 For each core: L1: 32K instruction and 32K data cache, L2: 1MB, L3:

8MB shared among all 4 cores
 Integrated, on-chip memory controller (DDR3)

45

Memory Hierarchy: Terminology
 Hit: data appears in some blocks in the upper level (example:

Block X)
 Hit Rate: the fraction of memory access found in the upper level
 Hit Time: Time to access the upper level which consists of

RAM access time + Time to determine hit/miss
 Miss: data needs to be retrieve from a block in the lower level

(Block Y)
 Miss Rate = 1 - (Hit Rate)
 Miss Penalty: Time to replace a block in the upper level + Time to deliver

the block the processor
 Hit Time << Miss Penalty (500 instructions on 21264!)

46

Impact of Hierarchy on Algorithms
 Today CPU time is a function of (ops, cache misses)
 What does this mean to compilers, data structures, algorithms?

 Quicksort: fastest comparison based sorting algorithm when keys fit in
memory

 Radix sort: also called “linear time” sort. For keys of fixed length and
fixed radix a constant number of passes over the data is sufficient
independent of the number of keys

 “The Influence of Caches on the Performance of Sorting” by A.
LaMarca and R.E. Ladner. Proceedings of the Eighth Annual
ACM-SIAM Symposium on Discrete Algorithms, January, 1997,
370-379.
 For Alphastation 250, 32 byte blocks, direct mapped L2 2MB cache, 8

byte keys, from 4000 to 4000000

47

Experimental Study (Membench)
 Microbenchmark for memory system performance

48

Membench: What to Expect

 Consider the average cost per load
 Plot one line for each array length, time vs. stride
 Small stride is best: if cache line holds 4 words, at most ¼ miss
 If array is smaller than a given cache, all those accesses will hit (after

the first run, which is negligible for large enough runs)
 Picture assumes only one level of cache
 Values have gotten more difficult to measure on modern procs

49

Memory Hierarchy on a Sun Ultra-2i

50

Memory Hierarchy on a Power3

51

Memory Hierarchy Lessons
 Caches vastly impact performance

 Cannot consider performance without considering memory hierarchy

 Actual performance of a simple program can be a complicated
function of the architecture
 Slight changes in the architecture or program change the performance

significantly
 To write fast programs, need to consider architecture

• True on sequential or parallel processor
 We would like simple models to help us design efficient algorithms

52

Memory Hierarchy Lessons
 Common technique for improving cache performance, called

blocking or tiling
 Idea: used divide-and-conquer to define a problem that fits in

register/L1-cache/L2-cache

 Autotuning: Deal with complexity through experiments
 Produce several different versions of code

• Different algorithms, Blocking Factors, Loop orderings, etc

 For each architecture, run different versions to see which is fastest

 Can (in principle) navigate complex design options for optimum

53

New Advances on Memory and Storage
－Storage Class Memory

545454

Reconstruction of Virtual Memory Architecture:
Break the I/O Bottleneck

5555

New In-Memory Computing Architecture

55

M
em

or
y

C
ha

nn
el

M
em

or
y

C
ha

nn
el

I/
O

 C
ha

nn
el

D
at

a
I/

O
 C

ha
nn

el

Disk

56

Oracle EXADATA

57

WHAT IS PARALLEL
ARCHITECTURE

Parallel architecture

58

What is Parallel Architecture?
 Machines with multiple processors

59

One Definition of Parallel Architecture
A parallel computer is a collection of processing

elements that cooperate to solve large problems fast
Some broad issues
 Resource Allocation

 how large a collection?
 how powerful are the elements?
 how much memory?

 Data access, Communication and Synchronization
 how do the elements cooperate and communicate?
 how are data transmitted between processors?
 what are the abstractions and primitives for cooperation?

 Performance and Scalability
 how does it all translate into performance?
 how does it scale?

60

Types of Parallelism

61

A PARALLEL ZOO OF
ARCHITECTURES

Parallel architecture

62

MIMD Machines
 Multiple Instruction, Multiple Data (MIMD)

 Multiple independent instruction streams, program counters, etc
 Called “multiprocessing” instead of “multithreading”

• Although, each of the multiple processors may be multithreaded
 When independent instruction streams confined to single chip,

becomes a “multicore” processor
 Shared memory: Communication through Memory

 Option 1: no hardware global cache coherence
 Option 2: hardware global cache coherence

 Message passing: Communication through Messages
 Applications send explicit messages between nodes in order to

communicate
 For most machines, shared memory built on top of message-

passing network
 Bus-based machines are “exception”

63

Examples of MIMD Machines
 Symmetric Multiprocessor

 Multiple processors in box with shared
memory communication

 Current MultiCore chips like this
 Every processor runs copy of OS

 Non-uniform shared-memory with
separate I/O through host
 Multiple processors

• Each with local memory
• general scalable network

 Extremely light “OS” on node provides
simple services
• Scheduling/synchronization

 Network-accessible host for I/O
 Cluster

 Many independent machine connected
with general network

 Communication through messages

64

Cray T3E (1996)
Follow-on to earlier T3D (1 993) using 21064’s
Up to 2,048 675MHz Alpha 21164 processors connected in 3D torus

65

Cray T3E (1996)
 Each node has 256MB-2GB local DRAM memory
 Load and stores access global memory over network
 Only local memory cached by on-chip caches
 Alpha microprocessor surrounded by custom “shell” circuitry

to make it into effective MPP node
 Shell provides

 multiple stream buffers instead of board-level (L3) cache
 external copy of on-chip cache tags to check against remote writes to

local memory, generates on-chip invalidates on match
 512 external E registers (asynchronous vector load/store engine)
 address management to allow all of external physical memory to be

addressed
 atomic memory operations (fetch&op)
 support for hardware barriers/eureka to synchronize parallel tasks

66

Cray XT5 (2007)

67

Sun Starfire UE10000 (1997)

68

SGI Origin 2000 (1996)

69

 Cache-coherence Shared Memory
 Partially in Software!
 Sequential Consistency
 LimitLESS cache coherence for better scalability

 User-level Message-Passing
 Fast, atomic launch of messages
 Active messages
 User-level interrupts

 Rapid Context-Switching
 Course-grained multithreading

 Single Full/Empty bit per word for synchronization
 Can build locks, barriers, other higher-level constructs

MIT Alewife Multiprocessor: SM & MP

70

Message Passing MPPs
(Massively Parallel Processors)
 Initial Research Projects
 Caltech Cosmic Cube (early 1980s) using custom Mosaic processors
 J-Machine (early 1990s) MIT
 Commercial Microprocessors including MPP Support
 Transputer (1985)
 nCube-1(1986) /nCube-2 (1990)
 Standard Microprocessors + Network Interfaces
 Intel Paragon/i860 (1991)
 TMC CM-5/SPARC (1992)
 Meiko CS-2/SPARC (1993)
 IBM SP-1/POWER (1993)
 MPP Vector Supers
 Fujitsu VPP500 (1994)

71

MIT J-Machine (Jelly-bean machine)

 3-dimensional network topology
 Non-adaptive, E-cubed routing
 Hardware routing
 Maximize density of communication

 64-nodes/board, 1024 nodes total
 Low-powered processors
 Message passing instructions
 Associative array primitives to aid in synthesizing shared-address space

 Extremely fine-grained communication
 Hardware-supported Active Messages

72

IBM Blue Gene/L Processor

73

BG/L 64K Processor System

74

42nd TOP500 on November 18, 2013

75

Tianhe-2

76

Tianhe-2

77

MULTICORE CHIPS
Parallel architecture

78

Parallel Chip-Scale Processors

 Multicore processors emerging in general-purpose market due
to power limitations in single-core performance scaling
 4-16 cores in 2009, connected as cache-coherent SMP
 Cache-coherent shared memory

 Embedded applications need large amounts of computation
 Recent trend to build “extreme” parallel processors with dozens to

hundreds of parallel processing elements on one die
 Often connected via on-chip networks, with no cache coherence
 Examples: 188 core “Metro” chip from CISCO

79

Sun’s T1 (“Niagara”)
 Highly Threaded
 8 Cores
 4 Threads/Core

 Target: Commercial server
applications
 High thread level parallelism (TLP)

• Large numbers of parallel client requests
 Low instruction level parallelism (ILP)

• High cache miss rates
• Many unpredictable branches
• Frequent load-load dependencies

 Power, cooling, and space are major concerns for data centers
 Metric: Performance/Watt/Sq. Ft.
 Approach: Multicore, Fine-grain multithreading, Simple

pipeline, Small L1 caches, Shared L2

80

T1 Fine-Grained Multithreading
 Each core supports four threads and has its own level one

caches (16KB for instructions and 8 KB for data)
 Coherency is enforced among the L1 caches by a directory associated

with each L2 cache block
 Switching to a new thread on each clock cycle
 Idle threads are bypassed in the scheduling

 Waiting due to a pipeline delay or cache miss
 Processor is idle only when all 4 threads are idle or stalled

 Both loads and branches incur a 3 cycle delay that can only
be hidden by other threads

 A single set of floating-point functional units is shared by all 8
cores
 floating-point performance was not a focus for T1
 (New T2 design has FPU per core)

81

Embedded Parallel Processors
 Often embody a mixture of old architectural styles and ideas

 Exposed memory hierarchies and interconnection networks
 Programmers code to the “metal” to get best cost/power/performance
 Portability across platforms less important

 Customized synchronization mechanisms
 Interlocked communication channels (processor blocks on read if data

not ready)
 Barrier signals
 Specialized atomic operation units

 Many more, simpler cores

82

Cisco CSR-1 Metro Chip

83

IBM Cell Processor (Playstation-3)

84

Nvidia G8800 Graphics Processor
 This is a GPU (Graphics Processor Unit)

 Available in many desktops
 Example: 16 cores similar to a vector processor with 8 lanes (128 stream

processors total)
 Processes threads in SIMD groups of 32 (a “warp”)
 Some stripmining done in hardware

 Threads can branch, but loses performance compared to when all threads
are running same code

 Complete parallel programming environment (CUDA)
 A lot of parallel codes have been ported to these GPUs
 For some data parallel applications, GPUs provide the fastest implementations

85

Nvidia Fermi GF100 GPU

86

Nvidia Tesla K40 GPU

87

Nvidia Tesla GPU

88

The New Wave
 The rate of technological

progress for networking is an
astounding 10-fold increase
every 4 years (77.8% yearly
compound rate)

 The emergence of network-centric computing (as opposed to
processor-centric) –distributed high performance/throughput
computing

89

References
 The content expressed in this chapter is come from
 berkeley university open course

(http://parlab.eecs.berkeley.edu/2010bootcampagenda)

 Carnegie Mellon University’s public course, Parallel Computer
Architecture and Programming, (CS 418)
(http://www.cs.cmu.edu/afs/cs/academic/class/15418-
s11/public/lectures/)

 Livermore Computing Center’s training materials, Introduction to
Parallel Computing
(https://computing.llnl.gov/tutorials/parallel_comp/)

	Parallel Programming Principle and Practice�Lecture 2 — Parallel Architecture
	Outline
	UNIPROCESSOR PARALLELISM
	Parallelism is Everywhere
	Parallelism is Everywhere
	PIPELINING, SUPERSCALAR, OUT-OF-ORDER EXECUTION
	What is Pipelining?
	5 Steps of MIPS Pipeline
	Visualizing The Pipeline
	Limits to Pipelining
	Data Hazard: Must go Back in Time?
	Out-of-Order (OOO) Execution
	Modern ILP
	Modern ILP（Cont.）
	Technology Trends: Moore’s Law
	Limiting Forces: Clock Speed and ILP
	VECTOR PROCESSING/SIMD
	Vector Code Example
	Vector Programming Model
	SIMD Architecture
	Pseudo SIMD: (Poor-Man’s SIMD?)
	E.g.: SSE / SSE2 SIMD on Intel
	General-Purpose GPUs (GP-GPUs)
	MULTITHREADING: INCLUDING PTHREADS
	Thread Level Parallelism (TLP)
	Common Notions of Thread Creation
	Overview of POSIX Threads
	Forking POSIX Threads
	Simple Threading Example (pThreads)
	Shared Data and Threads
	Loop Level Parallelism
	Thread Scheduling
	Multithreaded Execution
	What about combining ILP and TLP?
	Quick Recall: Many Resources IDLE!
	Simultaneous Multi-threading
	Power5 Dataflow
	UNIPROCESSOR MEMORY SYSTEMS
	Limiting Force: Memory Wall
	Principle of Locality
	Programs with locality cache well
	Memory Hierarchy
	Memory Hierarchy
	Example of Modern Core: Nehalem
	Memory Hierarchy: Terminology
	Impact of Hierarchy on Algorithms
	Experimental Study (Membench)
	Membench: What to Expect
	Memory Hierarchy on a Sun Ultra-2i
	Memory Hierarchy on a Power3
	Memory Hierarchy Lessons
	Memory Hierarchy Lessons
	New Advances on Memory and Storage�－Storage Class Memory
	幻灯片编号 54
	New In-Memory Computing Architecture
	Oracle EXADATA
	WHAT IS PARALLEL ARCHITECTURE
	What is Parallel Architecture?
	One Definition of Parallel Architecture
	Types of Parallelism
	A PARALLEL ZOO OF ARCHITECTURES
	MIMD Machines
	Examples of MIMD Machines
	Cray T3E (1996)
	Cray T3E (1996)
	Cray XT5 (2007)
	Sun Starfire UE10000 (1997)
	SGI Origin 2000 (1996)
	MIT Alewife Multiprocessor: SM & MP
	Message Passing MPPs� (Massively Parallel Processors)
	MIT J-Machine (Jelly-bean machine)
	IBM Blue Gene/L Processor
	BG/L 64K Processor System
	42nd TOP500 on November 18, 2013
	Tianhe-2
	Tianhe-2
	MULTICORE CHIPS
	Parallel Chip-Scale Processors
	Sun’s T1 (“Niagara”)
	T1 Fine-Grained Multithreading
	Embedded Parallel Processors
	Cisco CSR-1 Metro Chip
	IBM Cell Processor (Playstation-3)
	Nvidia G8800 Graphics Processor
	Nvidia Fermi GF100 GPU
	Nvidia Tesla K40 GPU
	Nvidia Tesla GPU
	The New Wave
	References

