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Architecture for Shared Memory Model

Non-Uniform Memory 
Access

Uniform Memory Access
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Thread Based Parallelism
 OpenMP programs accomplish parallelism exclusively 

through the use of threads

 A thread of execution is the smallest unit of processing that 
can be scheduled by an operating system
 The idea of a subroutine that can be scheduled to run autonomously 

might help explain what a thread is

 Threads exist within the resources of a single process
 Without the process, they cease to exist

 Typically, the number of threads match the number of 
machine processors/cores
 However, the actual use of threads is up to the application
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Explicit Parallelism
 OpenMP is an explicit (not automatic) programming model, 

offering the programmer full control over parallelization

 Parallelization can be as simple as taking a serial program 
and inserting compiler directives....

 Or as complex as inserting subroutines to set multiple levels 
of parallelism, locks and even nested locks
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OpenMP Overview

omp_set_lock(lck)

#pragma omp parallel for private(A, B)

#pragma omp critical

C$OMP parallel do shared(a, b, c)

C$OMP PARALLEL  REDUCTION (+: A, B)

call OMP_INIT_LOCK (ilok)

call omp_test_lock(jlok) 

setenv OMP_SCHEDULE “dynamic”

CALL OMP_SET_NUM_THREADS(10)

C$OMP DO lastprivate(XX)

C$OMP ORDERED

C$OMP  SINGLE PRIVATE(X)

C$OMP SECTIONS 

C$OMP MASTERC$OMP ATOMIC

C$OMP FLUSH

C$OMP PARALLEL DO ORDERED PRIVATE (A, B, C)

C$OMP THREADPRIVATE(/ABC/)

C$OMP PARALLEL COPYIN(/blk/)

Nthrds = OMP_GET_NUM_PROCS()

!$OMP  BARRIER

OpenMP:  An API for Writing Multithreaded 
Applications

 A set of compiler directives and library 
routines  for parallel application programmers
 Greatly simplifies writing multi-threaded (MT) 
programs in Fortran, C and C++
 Standardizes last 20 years of SMP practice
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OpenMP Release History

OpenMP
Fortran 1.1

OpenMP
C/C++ 1.0

OpenMP
Fortran 2.0

OpenMP
C/C++ 2.0

1998

20001999

2002

OpenMP
Fortran 1.0

1997

OpenMP
2.5

2005

A single 
specification 
for Fortran, C 
and C++

OpenMP
3.0

Tasking, 
other new 
features

2008
OpenMP

3.1

2011

A few more 
features and 
bug fixes
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OpenMP Core Syntax

 Most of the constructs in OpenMP are compiler directives
#pragma omp construct [clause [clause]…]

 Example

#pragma omp parallel num_threads(4)
 Function prototypes and types in the file

#include <omp.h>
 Most OpenMP constructs apply to a structured block

 Structured block: a block of one or more statements with one point 
of entry at the top and one point of exit at the bottom

 It’s OK to have an exit() within the structured block
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OpenMP Overview: How do Threads Interact?

 OpenMP is a multi-threading, shared address model
• Threads communicate by sharing variables

 Unintended sharing of data causes race conditions
• Race condition: when the program’s outcome changes as the 

threads are scheduled differently

 To control race conditions
• Use synchronization to protect data conflicts

 Synchronization is expensive
• Change how data is accessed to minimize the need for 

synchronization
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OpenMP Programming Model
Fork-Join Parallelism

All OpenMP programs begin as a single process: the master thread. 
The master thread executes sequentially until the first parallel 
region construct is encountered

Master thread spawns a team of threads as needed

Parallelism added incrementally until performance goals are met: i.e. 
the sequential program evolves into a parallel program

11
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Thread Creation: Parallel Regions

 Create threads in OpenMP with the parallel construct
 For example, to create a 4 thread in parallel region

double A[1000];

#pragma omp parallel num_threads(4)
{

int ID = omp_get_thread_num();
pooh(ID,A);

}

 Each thread calls pooh(ID,A) for ID = 0 to 3

Each thread 
executes  a 
copy of the 
code within 
the 
structured 
block

clause to request a certain 
number of threads

Runtime function 
returning a thread ID
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Thread Creation: Parallel Regions

 Each thread executes 
the same code 
redundantly

double A[1000];
#pragma omp parallel num_threads(4)
{

int ID = omp_get_thread_num();
pooh(ID, A);

}
printf(“all done\n”);

omp_set_num_threads(4)

pooh(1, A) pooh(2, A) pooh(3, A)

printf(“all done\n”);

pooh(0, A)

double A[1000];

A single 
copy of A
is shared 
between all 
threads

Threads wait  here  for all threads to 
finish before proceeding (i.e. a barrier)
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Loop Worksharing Constructs
 Loop worksharing construct splits up loop iterations 

among the threads in a team

#pragma omp parallel

{
#pragma omp for 

for (I=0;I<N;I++){
NEAT_STUFF(I);

}
}

Loop construct name

•C/C++: for
•Fortran: do

The variable I is made “private” to each 
thread  by default.  You could do this 
explicitly with a “private(I)” clause
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Loop Worksharing Constructs
A Motivating Example

for(i=0;i<N;i++)   { a[i] = a[i] + b[i];}

#pragma omp parallel
{

int id, i, Nthrds, istart, iend;
id = omp_get_thread_num();
Nthrds = omp_get_num_threads();
istart = id * N / Nthrds;
iend = (id+1) * N / Nthrds;
if (id == Nthrds-1)iend = N;
for(i=istart;i<iend;i++)   { a[i] = a[i] + b[i];}

}

#pragma omp parallel 
#pragma omp for   

for(i=0;i<N;i++)   { a[i] = a[i] + b[i];}

Sequential code

OpenMP parallel 
region

OpenMP parallel 
region and a 
worksharing for 
construct
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Loop Worksharing Constructs:
The schedule clause
 The schedule clause affects how loop iterations are mapped onto threads

 schedule(static[,chunk])
 Deal-out blocks of iterations of size “chunk” to each thread

 schedule(dynamic[,chunk])
 Each thread grabs “chunk” iterations off a queue until all iterations 

have been handled
 schedule(guided[,chunk])

 Threads dynamically grab blocks of iterations. The size of the block 
starts large and shrinks down to size “chunk” as the calculation 
proceeds

 schedule(runtime)
 Schedule and chunk size taken from the OMP_SCHEDULE 

environment variable (or the runtime library)

 schedule(auto)
 Schedule is left up to the runtime to choose (does not have to be any 

of the above)
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Schedule Clause When To Use
STATIC Pre-determined and 

predictable by the 
programmer

DYNAMIC Unpredictable, highly 
variable work per 
iteration

GUIDED Special case of dynamic 
to reduce scheduling 
overhead

AUTO When the runtime can 
“learn” from previous 
executions of the same 
loop

Loop Worksharing Constructs:
The schedule clause

Least work at 
runtime : 
scheduling 
done at 
compile-time

Most work at 
runtime : 
complex 
scheduling 
logic used at 
run-time
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Working with Loops
 Basic approach

 Find compute intensive loops

 Make the loop iterations independent .. So they can safely 
execute in any order without loop-carried dependencies

 Place the appropriate OpenMP directive and test

int i, j, A[MAX];
j = 5;
for (i=0;i< MAX; i++) {

j +=2;
A[i] = big(j); 

} 

int i,  A[MAX];
#pragma omp parallel for
for (i=0;i< MAX; i++) {

int j = 5 + 2*(i+1);
A[i] = big(j); 

} 
Remove loop 

carried 
dependence

Note: loop index i
is private by 

default
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Nested Loops

 For perfectly nested rectangular loops we can parallelize 
multiple loops in the nest with the collapse clause 

 Will form a single loop of length NxM and then parallelize 
that

 Useful if N is O(no. of threads) so parallelizing the outer 
loop may not have good load balance

#pragma omp parallel for collapse(2)
for (int i=0; i<N; i++) {
for (int j=0; j<M; j++) {

.....
} 

}

Number of 
loops to be 
parallelized, 
counting from 
the outside
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Rules for Collapse Clause  
 Only one collapse clause is allowed on a worksharing DO or PARALLEL DO

directive

 The specified number of loops must be present lexically. None of the loops can be 
in a called subroutine

 The loops must form a rectangular iteration space and the bounds and stride of 
each loop must be invariant over all the loops

 If the loop indices are of different size, the index with the largest size will be used 
for the collapsed loop

 The loops must be perfectly nested. There is no intervening code nor any 
OpenMP directive between the loops which are collapsed

 The associated do-loops must be structured blocks. Their execution must not be 
terminated by an EXIT statement

 If multiple loops are associated to the loop construct, only an iteration of the 
innermost associated loop may be curtailed by a CYCLE statement, and there 
must be no branches to any of the loop termination statements except for the 
innermost associated loop
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Reduction

 We are combining values into a single accumulation 
variable (ave) … there is a true dependence between loop 
iterations that can’t be trivially removed

 This is a very common situation … it is called a reduction
 Support for reduction operations is included in most 

parallel programming environments

double  ave=0.0, A[MAX];    int i;
for (i=0;i< MAX; i++) {

ave + = A[i];
} 
ave = ave/MAX; 

 How do we handle this case?
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Reduction
 OpenMP reduction clause 

reduction (op : list)

 Inside a parallel or a worksharing construct
• A local copy of each list variable is made and initialized depending 

on the op (e.g. 0 for “+”)

• Updates occur on the local copy

• Local copies are reduced into a single value and combined with the 
original global value

 The variables in list must be shared in the enclosing parallel region  

double  ave=0.0, A[MAX];    int i;
#pragma omp parallel for reduction (+:ave)
for (i=0;i< MAX; i++) {

ave + = A[i];
} 
ave = ave/MAX; 
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OpenMP: Reduction Operands/Initial Values

 Many different associative operands can be used with reduction

 Initial values are the ones that make sense mathematically

Fortran Only
Operator Initial value

.AND. .true.
.OR. .false.

.NEQV. .false.
.IEOR. 0
.IOR. 0

.IAND. All bits on
.EQV. .true.
MIN Largest pos. number
MAX Most neg. number

Operator Initial value

+ 0
* 1
- 0

C/C++ only
Operator Initial value

& ~0

| 0

^ 0

&& 1

|| 0
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Example:  Numerical Integration

∫ 4.0
(1+x2) dx = π

0

1

∑ F(xi)∆x ≈ π
i = 0

N

Mathematically, we know that:

We can approximate the 
integral as a sum of 
rectangles:

where each rectangle has 
width ∆x and height F(xi) at 
the middle of interval i

4.0

2.0

1.0
X0.0
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Numerical Integration: Serial PI Program

static long num_steps = 100000;
double step;
void main ()
{ int i; double x, pi, sum = 0.0;

step = 1.0/(double) num_steps;

for (i=0;i< num_steps; i++){
x = (i+0.5)*step;
sum = sum + 4.0/(1.0+x*x);

}
pi = step * sum;

}
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Numerical Integration: Solution  
#include <omp.h>
static long num_steps = 100000;         double step;
void main ()
{    int i; double x, pi, sum = 0.0; 

step = 1.0/(double) num_steps;
#pragma omp parallel 
{

double x;
#pragma omp for reduction(+:sum)

for (i=0;i< num_steps; i++){
x = (i+0.5)*step;
sum = sum + 4.0/(1.0+x*x);

}
}

pi = step * sum;
}
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Single Worksharing Construct
 The single construct denotes a block of code that is 

executed by only one thread (not necessarily the master 
thread)

 A barrier is implied at the end of the single block (can 
remove the barrier with a nowait clause)

#pragma omp parallel  
{

do_many_things();
#pragma omp single

{     exchange_boundaries();   }
do_many_other_things();

}
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Synchronization
 High level synchronization

• critical
• atomic
• barrier
• ordered

 Low level synchronization
• flush

Synchronization is used 
to impose order 

constraints and to 
protect access to shared 

data
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Synchronization: Critical  

 Mutual exclusion: Only one thread at a time can enter a 
critical region

float res;

#pragma omp parallel

{     float B;   int i, id, nthrds;

id = omp_get_thread_num();

nthrds = omp_get_num_threads();

for(i=id;i<niters;i+=nthrds){

B =  big_job(i);

#pragma omp critical
res += consume (B);

}
}

Threads wait 
their turn –
only one at a 
time calls 
consume()
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Synchronization: Atomic
 atomic provides mutual exclusion but only applies to the 

update of a memory location (the update of X in the 
following example)

#pragma omp parallel

{ 
double tmp, B;

B =  DOIT();

#pragma omp atomic 
X += big_ugly(B);

}

#pragma omp parallel

{ 
double tmp, B;

B =  DOIT();

tmp = big_ugly(B);

#pragma omp atomic 
X +=  tmp;

}

Atomic only protects the 
read/update of X
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Synchronization: Barrier

 barrier: Each thread waits until all threads arrive
#pragma omp parallel shared (A, B, C) private(id)
{

id=omp_get_thread_num();
A[id] = big_calc1(id);

#pragma omp barrier
#pragma omp for 

for(i=0;i<N;i++){
C[i]=big_calc3(i,A);

}
#pragma omp for nowait

for(i=0;i<N;i++){ 
B[i]=big_calc2(C,  i); 

}
A[id] = big_calc4(id);

}

no implicit barrier
due to nowait

implicit barrier at the end of a 
for worksharing construct

implicit barrier at the end 
of a parallel region
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Master Construct
 The master construct denotes a structured block that is 

only executed by the master thread
 The other threads just skip it (no synchronization is implied)

#pragma omp parallel  
{

do_many_things();
#pragma omp master

{     exchange_boundaries();   }
#pragma omp  barrier

do_many_other_things();
}
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Data Environment: Default Storage Attributes

 Shared memory programming model
 Most variables are shared by default

 Global variables are SHARED among threads
 Fortran: COMMON blocks, SAVE variables, MODULE 

variables

 C: File scope variables, static

 Both: dynamically allocated memory (ALLOCATE, malloc, 
new)

 But not everything is shared...
 Stack variables in subprograms (Fortran) or functions (C) 

called from parallel regions are PRIVATE

 Automatic variables within a statement block are PRIVATE



37

Data Sharing: Examples

double A[10];
int main() {
int index[10];
#pragma omp parallel  

work(index);
printf(“%d\n”, index[0]);

}

extern double A[10];
void work(int *index) {
double temp[10];
static int count;
...

}

temp

A, index, count

temp temp

A, index, count

A, index and count are 
shared by all threads

temp is local to each 
thread
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Data Sharing: Changing Storage Attributes

 One can selectively change storage attributes for constructs 
using the following clauses*
 SHARED

 PRIVATE

 FIRSTPRIVATE

 The final value of a private inside a parallel loop can be 
transmitted to the shared variable outside the loop with
 LASTPRIVATE

 The default attributes can be overridden with
 DEFAULT (PRIVATE | SHARED | NONE)

All the  clauses on this page 
apply to the OpenMP construct 
NOT to the entire region

All data clauses apply to parallel constructs and worksharing constructs except 
“shared” which only applies to parallel constructs.

DEFAULT(PRIVATE) is Fortran only
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Data Sharing: Private Clause

 private(var)  creates a new local copy of var for each thread
 The value of the private copies is uninitialized

 The value of the original variable is unchanged after the region

void wrong() {
int tmp = 0;

#pragma omp parallel for private(tmp)
for (int j = 0; j < 1000; ++j) 

tmp += j;
printf(“%d\n”, tmp);

}

tmp was not 
initialized

tmp is 0 here
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Data Sharing: Private Clause
When is Original Variable Valid?

 The original variable’s value is unspecified if it is 
referenced outside of the construct
 Implementations may reference the original variable or a 

copy ….. a dangerous programming practice!

int tmp;
void danger() {

tmp = 0;
#pragma omp parallel private(tmp)

work();
printf(“%d\n”, tmp);

}

extern int tmp;
void work() {

tmp = 5;
}

unspecified which 
copy of tmptmp has unspecified 

value
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Firstprivate Clause
 Variables initialized from shared variable

 C++ objects are copy-constructed

incr = 0;
#pragma omp parallel for firstprivate(incr)
for (i = 0; i <= MAX; i++) {

if ((i%2)==0) incr++;
A[i] = incr;

}

Each thread gets its own copy 
of incr with an initial value of 0
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Lastprivate Clause
 Variables update shared variable using value from last 

iteration 

 C++ objects are updated as if by assignment

void sq2(int n, double *lastterm)

{
double x; int i;

#pragma omp parllel for lastprivate(x)
for (i = 0; i < n; i++){

x = a[i]*a[i] + b[i]*b[i];
b[i] = sqrt(x);

}
*lastterm = x;

}
x has the value it held for 
the last sequential 
iteration (i.e., for i=(n-1))
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Data Sharing: Default Clause

 Note that the default storage attribute is DEFAULT(SHARED) (so 
no need to use it)

 Exception: #pragma omp task
 To change default: DEFAULT(PRIVATE)
 each variable in the construct is made private as if specified in a private 

clause
 mostly saves typing  
 DEFAULT(NONE): no default for variables in static extent. Must list 

storage attribute for each variable in static extent. Good 
programming practice!

Only the Fortran API supports default(private).  

C/C++ only has default(shared) or default(none).
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What are Tasks?

 Tasks are independent units of work

 Threads are assigned to perform the 
work of each task
 Tasks may be deferred 

 Tasks may be executed immediately

 The runtime system decides which of 
the above

 Tasks are composed of
• code to execute

• data environment

• internal control variables (ICV)

Serial Parallel
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Task Construct – Explicit Task View
 A team of threads is created 

at the omp parallel construct
 A single thread is chosen to 

execute the while loop – lets 
call this thread “L”

 Thread L operates the while 
loop, creates tasks, and 
fetches next pointers

 Each time L crosses the omp 
task construct it generates a 
new task and has a thread 
assigned to it

 Each task runs in its own 
thread

 All tasks complete at the 
barrier at the end of the 
parallel region’s single
construct

#pragma omp parallel
{

#pragma omp single
{  // block 1

node * p = head;
while (p) { //block 2
#pragma omp task private(p)

process(p);
p = p->next;  //block 3
}

}
}



47

#pragma omp parallel num_threads(8)
// assume 8 threads
{
#pragma omp single private(p)
{
…
while (p) {  
#pragma omp task 

{
processwork(p);

}
p = p->next;

}
}

}

Simple Task Example

A pool of 8 threads is 
created here

One thread gets to 
execute the while loop

The single “while loop” 
thread creates a task for 

each instance of 
processwork()
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Why are Tasks Useful?

#pragma omp parallel
{

#pragma omp single
{  // block 1

node * p = head;
while (p) {  //block 2
#pragma omp task

process(p);
p = p->next;  //block 3
}

}
}

Have potential to parallelize irregular patterns and recursive function calls

Block 
1

Block 2
Task 1

Block 2
Task 2

Block 2
Task 3

Block 
3

Block 
3

Tim
e

Single 
Threaded

Block 1

Block 3

Block 3

Thr1      Thr2    Thr3    Thr4

Block 2
Task 2

Block 2
Task 1

Block 2
Task 3

Time 
Saved

Idle

Idle
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When are Tasks Guaranteed to Complete
 Tasks are gauranteed to be complete at thread barriers

#pragma omp barrier

 …  or task barriers
#pragma omp taskwait
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Task Completion Example

#pragma omp parallel
{

#pragma omp task
foo();
#pragma omp barrier
#pragma omp single
{

#pragma omp task
bar();

}
}

Multiple foo tasks 
created here – one for 

each thread

All foo tasks guaranteed 
to be completed  here

One bar task created 
here

bar task guaranteed to 
be completed  here
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Recursive Matrix Multiplication
 Consider recursive matrix multiplication, described in 

next 3 slides
 How would you parallelize this program using OpenMP 

tasks?

 What data considerations need to be addressed?
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Recursive Matrix Multiplication
 Quarter each input matrix and output matrix

 Treat each submatrix as a single element and multiply

 8 submatrix multiplications, 4 additions

A B C

A1,1 A1,2

A2,1 A2,2

B1,1 B1,2

B2,1 B2,2

C1,1 C1,2

C2,1 C2,2

C1,1 = A1,1·B1,1 + A1,2·B2,1

C2,1 = A2,1·B1,1 + A2,2·B2,1

C1,2 = A1,1·B1,2 + A1,2·B2,2

C2,2 = A2,1·B1,2 + A2,2·B2,2
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How to Multiply Submatrices?
 Use the same routine that is computing the full matrix 

multiplication
 Quarter each input submatrix and output submatrix

 Treat each sub-submatrix as a single element and multiply

A B C

A1,1 A1,2

A2,1 A2,2

B1,1 B1,2

B2,1 B2,2

C1,1 C1,2

C2,1 C2,2

C111,1 = A111,1·B111,1 + A111,2·B112,1

C1,1 = A1,1·B1,1 + A1,2·B2,1

A1,1

A111,1 A111,2

A112,1 A112,2

B1,1

B111,1 B111,2

B112,1 B112,2

C1,1

C111,1 C111,2

C112,1 C112,2
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C1,1 = A1,1·B1,1 + A1,2·B2,1

C2,1 = A2,1·B1,1 + A2,2·B2,1

C1,2 = A1,1·B1,2 + A1,2·B2,2

C2,2 = A2,1·B1,2 + A2,2·B2,2

Recursively Multiply Submatrices

 Also need stopping criteria for recursion

void matmultrec(int mf, int ml, int nf, int nl, int pf, int pl, 

double **A, double **B, double **C)

{// Dimensions: A[mf..ml][pf..pl]    B[pf..pl][nf..nl]   C[mf..ml][nf..nl]

// C11 += A11*B11

matmultrec(mf, mf+(ml-mf)/2, nf, nf+(nl-nf)/2, pf, pf+(pl-pf)/2, A, B, C);  

// C11 += A12*B21

matmultrec(mf, mf+(ml-mf)/2, nf, nf+(nl-nf)/2, pf+(pl-pf)/2, pl, A, B, C);  

. . . 

}

 Need range of indices to define each submatrix to be used
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#define THRESHOLD 32768   // product size below which simple matmult code is called

void matmultrec(int mf, int ml, int nf, int nl, int pf, int pl, 
double **A, double **B, double **C)

// Dimensions: A[mf..ml][pf..pl]    B[pf..pl][nf..nl]   C[mf..ml][nf..nl]

{  
if ((ml-mf)*(nl-nf)*(pl-pf) < THRESHOLD)   

matmult (mf, ml, nf, nl, pf, pl, A, B, C);   
else  
{ 

#pragma omp task
{  

matmultrec(mf, mf+(ml-mf)/2, nf, nf+(nl-nf)/2, pf, pf+(pl-pf)/2, A, B, C);  // C11 += A11*B11
matmultrec(mf, mf+(ml-mf)/2, nf, nf+(nl-nf)/2, pf+(pl-pf)/2, pl, A, B, C);  // C11 += A12*B21

}
#pragma omp task
{

matmultrec(mf, mf+(ml-mf)/2, nf+(nl-nf)/2, nl, pf, pf+(pl-pf)/2, A, B, C);  // C12 += A11*B12
matmultrec(mf, mf+(ml-mf)/2, nf+(nl-nf)/2, nl, pf+(pl-pf)/2, pl, A, B, C);  // C12 += A12*B22

}
#pragma omp task
{

matmultrec(mf+(ml-mf)/2, ml, nf, nf+(nl-nf)/2, pf, pf+(pl-pf)/2, A, B, C);  // C21 += A21*B11
matmultrec(mf+(ml-mf)/2, ml, nf, nf+(nl-nf)/2, pf+(pl-pf)/2, pl, A, B, C);  // C21 += A22*B21

}
#pragma omp task
{

matmultrec(mf+(ml-mf)/2, ml, nf+(nl-nf)/2, nl, pf, pf+(pl-pf)/2, A, B, C);  // C22 += A21*B12
matmultrec(mf+(ml-mf)/2, ml, nf+(nl-nf)/2, nl, pf+(pl-pf)/2, pl, A, B, C);  // C22 += A22*B22

}
#pragma omp taskwait

}   
}   

Recursive Solution

 Could be executed in parallel as 4 tasks
 Each task executes the two calls for the same output submatrix of C
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