
Parallel Programming Principle and Practice

Lecture 6 — Shared Memory Programming OpenMP

Jin, Hai

School of Computer Science and Technology

Huazhong University of Science and Technology

2

Outline

 OpenMP Overview

 Creating Threads

 Parallel Loops

 Synchronization

 Data Environment

 Tasks

3

Architecture for Shared Memory Model

Non-Uniform Memory
Access

Uniform Memory Access

4

Thread Based Parallelism
 OpenMP programs accomplish parallelism exclusively

through the use of threads

 A thread of execution is the smallest unit of processing that
can be scheduled by an operating system
 The idea of a subroutine that can be scheduled to run autonomously

might help explain what a thread is

 Threads exist within the resources of a single process
 Without the process, they cease to exist

 Typically, the number of threads match the number of
machine processors/cores
 However, the actual use of threads is up to the application

5

Explicit Parallelism
 OpenMP is an explicit (not automatic) programming model,

offering the programmer full control over parallelization

 Parallelization can be as simple as taking a serial program
and inserting compiler directives....

 Or as complex as inserting subroutines to set multiple levels
of parallelism, locks and even nested locks

6

OpenMP Overview

omp_set_lock(lck)

#pragma omp parallel for private(A, B)

#pragma omp critical

C$OMP parallel do shared(a, b, c)

C$OMP PARALLEL REDUCTION (+: A, B)

call OMP_INIT_LOCK (ilok)

call omp_test_lock(jlok)

setenv OMP_SCHEDULE “dynamic”

CALL OMP_SET_NUM_THREADS(10)

C$OMP DO lastprivate(XX)

C$OMP ORDERED

C$OMP SINGLE PRIVATE(X)

C$OMP SECTIONS

C$OMP MASTERC$OMP ATOMIC

C$OMP FLUSH

C$OMP PARALLEL DO ORDERED PRIVATE (A, B, C)

C$OMP THREADPRIVATE(/ABC/)

C$OMP PARALLEL COPYIN(/blk/)

Nthrds = OMP_GET_NUM_PROCS()

!$OMP BARRIER

OpenMP: An API for Writing Multithreaded
Applications

 A set of compiler directives and library
routines for parallel application programmers
 Greatly simplifies writing multi-threaded (MT)
programs in Fortran, C and C++
 Standardizes last 20 years of SMP practice

77

OpenMP Release History

OpenMP
Fortran 1.1

OpenMP
C/C++ 1.0

OpenMP
Fortran 2.0

OpenMP
C/C++ 2.0

1998

20001999

2002

OpenMP
Fortran 1.0

1997

OpenMP
2.5

2005

A single
specification
for Fortran, C
and C++

OpenMP
3.0

Tasking,
other new
features

2008
OpenMP

3.1

2011

A few more
features and
bug fixes

8

OpenMP Core Syntax

 Most of the constructs in OpenMP are compiler directives
#pragma omp construct [clause [clause]…]

 Example

#pragma omp parallel num_threads(4)
 Function prototypes and types in the file

#include <omp.h>
 Most OpenMP constructs apply to a structured block

 Structured block: a block of one or more statements with one point
of entry at the top and one point of exit at the bottom

 It’s OK to have an exit() within the structured block

9

OpenMP Overview: How do Threads Interact?

 OpenMP is a multi-threading, shared address model
• Threads communicate by sharing variables

 Unintended sharing of data causes race conditions
• Race condition: when the program’s outcome changes as the

threads are scheduled differently

 To control race conditions
• Use synchronization to protect data conflicts

 Synchronization is expensive
• Change how data is accessed to minimize the need for

synchronization

10

Outline

 OpenMP Overview

 Creating Threads

 Parallel Loops

 Synchronization

 Data Environment

 Tasks

11

OpenMP Programming Model
Fork-Join Parallelism

All OpenMP programs begin as a single process: the master thread.
The master thread executes sequentially until the first parallel
region construct is encountered

Master thread spawns a team of threads as needed

Parallelism added incrementally until performance goals are met: i.e.
the sequential program evolves into a parallel program

11

12

Thread Creation: Parallel Regions

 Create threads in OpenMP with the parallel construct
 For example, to create a 4 thread in parallel region

double A[1000];

#pragma omp parallel num_threads(4)
{

int ID = omp_get_thread_num();
pooh(ID,A);

}

 Each thread calls pooh(ID,A) for ID = 0 to 3

Each thread
executes a
copy of the
code within
the
structured
block

clause to request a certain
number of threads

Runtime function
returning a thread ID

13

Thread Creation: Parallel Regions

 Each thread executes
the same code
redundantly

double A[1000];
#pragma omp parallel num_threads(4)
{

int ID = omp_get_thread_num();
pooh(ID, A);

}
printf(“all done\n”);

omp_set_num_threads(4)

pooh(1, A) pooh(2, A) pooh(3, A)

printf(“all done\n”);

pooh(0, A)

double A[1000];

A single
copy of A
is shared
between all
threads

Threads wait here for all threads to
finish before proceeding (i.e. a barrier)

14

Outline

 OpenMP Overview

 Creating Threads

 Parallel Loops

 Synchronization

 Data Environment

 Tasks

15

Loop Worksharing Constructs
 Loop worksharing construct splits up loop iterations

among the threads in a team

#pragma omp parallel

{
#pragma omp for

for (I=0;I<N;I++){
NEAT_STUFF(I);

}
}

Loop construct name

•C/C++: for
•Fortran: do

The variable I is made “private” to each
thread by default. You could do this
explicitly with a “private(I)” clause

16

Loop Worksharing Constructs
A Motivating Example

for(i=0;i<N;i++) { a[i] = a[i] + b[i];}

#pragma omp parallel
{

int id, i, Nthrds, istart, iend;
id = omp_get_thread_num();
Nthrds = omp_get_num_threads();
istart = id * N / Nthrds;
iend = (id+1) * N / Nthrds;
if (id == Nthrds-1)iend = N;
for(i=istart;i<iend;i++) { a[i] = a[i] + b[i];}

}

#pragma omp parallel
#pragma omp for

for(i=0;i<N;i++) { a[i] = a[i] + b[i];}

Sequential code

OpenMP parallel
region

OpenMP parallel
region and a
worksharing for
construct

17

Loop Worksharing Constructs:
The schedule clause
 The schedule clause affects how loop iterations are mapped onto threads

 schedule(static[,chunk])
 Deal-out blocks of iterations of size “chunk” to each thread

 schedule(dynamic[,chunk])
 Each thread grabs “chunk” iterations off a queue until all iterations

have been handled
 schedule(guided[,chunk])

 Threads dynamically grab blocks of iterations. The size of the block
starts large and shrinks down to size “chunk” as the calculation
proceeds

 schedule(runtime)
 Schedule and chunk size taken from the OMP_SCHEDULE

environment variable (or the runtime library)

 schedule(auto)
 Schedule is left up to the runtime to choose (does not have to be any

of the above)

18

Schedule Clause When To Use
STATIC Pre-determined and

predictable by the
programmer

DYNAMIC Unpredictable, highly
variable work per
iteration

GUIDED Special case of dynamic
to reduce scheduling
overhead

AUTO When the runtime can
“learn” from previous
executions of the same
loop

Loop Worksharing Constructs:
The schedule clause

Least work at
runtime :
scheduling
done at
compile-time

Most work at
runtime :
complex
scheduling
logic used at
run-time

19

Working with Loops
 Basic approach

 Find compute intensive loops

 Make the loop iterations independent .. So they can safely
execute in any order without loop-carried dependencies

 Place the appropriate OpenMP directive and test

int i, j, A[MAX];
j = 5;
for (i=0;i< MAX; i++) {

j +=2;
A[i] = big(j);

}

int i, A[MAX];
#pragma omp parallel for
for (i=0;i< MAX; i++) {

int j = 5 + 2*(i+1);
A[i] = big(j);

}
Remove loop

carried
dependence

Note: loop index i
is private by

default

2020

Nested Loops

 For perfectly nested rectangular loops we can parallelize
multiple loops in the nest with the collapse clause

 Will form a single loop of length NxM and then parallelize
that

 Useful if N is O(no. of threads) so parallelizing the outer
loop may not have good load balance

#pragma omp parallel for collapse(2)
for (int i=0; i<N; i++) {
for (int j=0; j<M; j++) {

.....
}

}

Number of
loops to be
parallelized,
counting from
the outside

21

Rules for Collapse Clause
 Only one collapse clause is allowed on a worksharing DO or PARALLEL DO

directive

 The specified number of loops must be present lexically. None of the loops can be
in a called subroutine

 The loops must form a rectangular iteration space and the bounds and stride of
each loop must be invariant over all the loops

 If the loop indices are of different size, the index with the largest size will be used
for the collapsed loop

 The loops must be perfectly nested. There is no intervening code nor any
OpenMP directive between the loops which are collapsed

 The associated do-loops must be structured blocks. Their execution must not be
terminated by an EXIT statement

 If multiple loops are associated to the loop construct, only an iteration of the
innermost associated loop may be curtailed by a CYCLE statement, and there
must be no branches to any of the loop termination statements except for the
innermost associated loop

22

Reduction

 We are combining values into a single accumulation
variable (ave) … there is a true dependence between loop
iterations that can’t be trivially removed

 This is a very common situation … it is called a reduction
 Support for reduction operations is included in most

parallel programming environments

double ave=0.0, A[MAX]; int i;
for (i=0;i< MAX; i++) {

ave + = A[i];
}
ave = ave/MAX;

 How do we handle this case?

23

Reduction
 OpenMP reduction clause

reduction (op : list)

 Inside a parallel or a worksharing construct
• A local copy of each list variable is made and initialized depending

on the op (e.g. 0 for “+”)

• Updates occur on the local copy

• Local copies are reduced into a single value and combined with the
original global value

 The variables in list must be shared in the enclosing parallel region

double ave=0.0, A[MAX]; int i;
#pragma omp parallel for reduction (+:ave)
for (i=0;i< MAX; i++) {

ave + = A[i];
}
ave = ave/MAX;

24

OpenMP: Reduction Operands/Initial Values

 Many different associative operands can be used with reduction

 Initial values are the ones that make sense mathematically

Fortran Only
Operator Initial value

.AND. .true.
.OR. .false.

.NEQV. .false.
.IEOR. 0
.IOR. 0

.IAND. All bits on
.EQV. .true.
MIN Largest pos. number
MAX Most neg. number

Operator Initial value

+ 0
* 1
- 0

C/C++ only
Operator Initial value

& ~0

| 0

^ 0

&& 1

|| 0

25

Example: Numerical Integration

∫ 4.0
(1+x2) dx = π

0

1

∑ F(xi)∆x ≈ π
i = 0

N

Mathematically, we know that:

We can approximate the
integral as a sum of
rectangles:

where each rectangle has
width ∆x and height F(xi) at
the middle of interval i

4.0

2.0

1.0
X0.0

26

Numerical Integration: Serial PI Program

static long num_steps = 100000;
double step;
void main ()
{ int i; double x, pi, sum = 0.0;

step = 1.0/(double) num_steps;

for (i=0;i< num_steps; i++){
x = (i+0.5)*step;
sum = sum + 4.0/(1.0+x*x);

}
pi = step * sum;

}

27

Numerical Integration: Solution
#include <omp.h>
static long num_steps = 100000; double step;
void main ()
{ int i; double x, pi, sum = 0.0;

step = 1.0/(double) num_steps;
#pragma omp parallel
{

double x;
#pragma omp for reduction(+:sum)

for (i=0;i< num_steps; i++){
x = (i+0.5)*step;
sum = sum + 4.0/(1.0+x*x);

}
}

pi = step * sum;
}

28

Single Worksharing Construct
 The single construct denotes a block of code that is

executed by only one thread (not necessarily the master
thread)

 A barrier is implied at the end of the single block (can
remove the barrier with a nowait clause)

#pragma omp parallel
{

do_many_things();
#pragma omp single

{ exchange_boundaries(); }
do_many_other_things();

}

29

Outline

 OpenMP Overview

 Creating Threads

 Parallel Loops

 Synchronization

 Data Environment

 Tasks

30

Synchronization
 High level synchronization

• critical
• atomic
• barrier
• ordered

 Low level synchronization
• flush

Synchronization is used
to impose order

constraints and to
protect access to shared

data

31

Synchronization: Critical

 Mutual exclusion: Only one thread at a time can enter a
critical region

float res;

#pragma omp parallel

{ float B; int i, id, nthrds;

id = omp_get_thread_num();

nthrds = omp_get_num_threads();

for(i=id;i<niters;i+=nthrds){

B = big_job(i);

#pragma omp critical
res += consume (B);

}
}

Threads wait
their turn –
only one at a
time calls
consume()

32

Synchronization: Atomic
 atomic provides mutual exclusion but only applies to the

update of a memory location (the update of X in the
following example)

#pragma omp parallel

{
double tmp, B;

B = DOIT();

#pragma omp atomic
X += big_ugly(B);

}

#pragma omp parallel

{
double tmp, B;

B = DOIT();

tmp = big_ugly(B);

#pragma omp atomic
X += tmp;

}

Atomic only protects the
read/update of X

33

Synchronization: Barrier

 barrier: Each thread waits until all threads arrive
#pragma omp parallel shared (A, B, C) private(id)
{

id=omp_get_thread_num();
A[id] = big_calc1(id);

#pragma omp barrier
#pragma omp for

for(i=0;i<N;i++){
C[i]=big_calc3(i,A);

}
#pragma omp for nowait

for(i=0;i<N;i++){
B[i]=big_calc2(C, i);

}
A[id] = big_calc4(id);

}

no implicit barrier
due to nowait

implicit barrier at the end of a
for worksharing construct

implicit barrier at the end
of a parallel region

34

Master Construct
 The master construct denotes a structured block that is

only executed by the master thread
 The other threads just skip it (no synchronization is implied)

#pragma omp parallel
{

do_many_things();
#pragma omp master

{ exchange_boundaries(); }
#pragma omp barrier

do_many_other_things();
}

35

Outline

 OpenMP Overview

 Creating Threads

 Parallel Loops

 Synchronization

 Data Environment

 Tasks

36

Data Environment: Default Storage Attributes

 Shared memory programming model
 Most variables are shared by default

 Global variables are SHARED among threads
 Fortran: COMMON blocks, SAVE variables, MODULE

variables

 C: File scope variables, static

 Both: dynamically allocated memory (ALLOCATE, malloc,
new)

 But not everything is shared...
 Stack variables in subprograms (Fortran) or functions (C)

called from parallel regions are PRIVATE

 Automatic variables within a statement block are PRIVATE

37

Data Sharing: Examples

double A[10];
int main() {
int index[10];
#pragma omp parallel

work(index);
printf(“%d\n”, index[0]);

}

extern double A[10];
void work(int *index) {
double temp[10];
static int count;
...

}

temp

A, index, count

temp temp

A, index, count

A, index and count are
shared by all threads

temp is local to each
thread

38

Data Sharing: Changing Storage Attributes

 One can selectively change storage attributes for constructs
using the following clauses*
 SHARED

 PRIVATE

 FIRSTPRIVATE

 The final value of a private inside a parallel loop can be
transmitted to the shared variable outside the loop with
 LASTPRIVATE

 The default attributes can be overridden with
 DEFAULT (PRIVATE | SHARED | NONE)

All the clauses on this page
apply to the OpenMP construct
NOT to the entire region

All data clauses apply to parallel constructs and worksharing constructs except
“shared” which only applies to parallel constructs.

DEFAULT(PRIVATE) is Fortran only

39

Data Sharing: Private Clause

 private(var) creates a new local copy of var for each thread
 The value of the private copies is uninitialized

 The value of the original variable is unchanged after the region

void wrong() {
int tmp = 0;

#pragma omp parallel for private(tmp)
for (int j = 0; j < 1000; ++j)

tmp += j;
printf(“%d\n”, tmp);

}

tmp was not
initialized

tmp is 0 here

40

Data Sharing: Private Clause
When is Original Variable Valid?

 The original variable’s value is unspecified if it is
referenced outside of the construct
 Implementations may reference the original variable or a

copy ….. a dangerous programming practice!

int tmp;
void danger() {

tmp = 0;
#pragma omp parallel private(tmp)

work();
printf(“%d\n”, tmp);

}

extern int tmp;
void work() {

tmp = 5;
}

unspecified which
copy of tmptmp has unspecified

value

41

Firstprivate Clause
 Variables initialized from shared variable

 C++ objects are copy-constructed

incr = 0;
#pragma omp parallel for firstprivate(incr)
for (i = 0; i <= MAX; i++) {

if ((i%2)==0) incr++;
A[i] = incr;

}

Each thread gets its own copy
of incr with an initial value of 0

42

Lastprivate Clause
 Variables update shared variable using value from last

iteration

 C++ objects are updated as if by assignment

void sq2(int n, double *lastterm)

{
double x; int i;

#pragma omp parllel for lastprivate(x)
for (i = 0; i < n; i++){

x = a[i]*a[i] + b[i]*b[i];
b[i] = sqrt(x);

}
*lastterm = x;

}
x has the value it held for
the last sequential
iteration (i.e., for i=(n-1))

43

Data Sharing: Default Clause

 Note that the default storage attribute is DEFAULT(SHARED) (so
no need to use it)

 Exception: #pragma omp task
 To change default: DEFAULT(PRIVATE)
 each variable in the construct is made private as if specified in a private

clause
 mostly saves typing
 DEFAULT(NONE): no default for variables in static extent. Must list

storage attribute for each variable in static extent. Good
programming practice!

Only the Fortran API supports default(private).

C/C++ only has default(shared) or default(none).

44

Outline

 OpenMP Overview

 Creating Threads

 Parallel Loops

 Synchronization

 Data Environment

 Tasks

45

What are Tasks?

 Tasks are independent units of work

 Threads are assigned to perform the
work of each task
 Tasks may be deferred

 Tasks may be executed immediately

 The runtime system decides which of
the above

 Tasks are composed of
• code to execute

• data environment

• internal control variables (ICV)

Serial Parallel

46

Task Construct – Explicit Task View
 A team of threads is created

at the omp parallel construct
 A single thread is chosen to

execute the while loop – lets
call this thread “L”

 Thread L operates the while
loop, creates tasks, and
fetches next pointers

 Each time L crosses the omp
task construct it generates a
new task and has a thread
assigned to it

 Each task runs in its own
thread

 All tasks complete at the
barrier at the end of the
parallel region’s single
construct

#pragma omp parallel
{

#pragma omp single
{ // block 1

node * p = head;
while (p) { //block 2
#pragma omp task private(p)

process(p);
p = p->next; //block 3
}

}
}

47

#pragma omp parallel num_threads(8)
// assume 8 threads
{
#pragma omp single private(p)
{
…
while (p) {
#pragma omp task

{
processwork(p);

}
p = p->next;

}
}

}

Simple Task Example

A pool of 8 threads is
created here

One thread gets to
execute the while loop

The single “while loop”
thread creates a task for

each instance of
processwork()

48

Why are Tasks Useful?

#pragma omp parallel
{

#pragma omp single
{ // block 1

node * p = head;
while (p) { //block 2
#pragma omp task

process(p);
p = p->next; //block 3
}

}
}

Have potential to parallelize irregular patterns and recursive function calls

Block
1

Block 2
Task 1

Block 2
Task 2

Block 2
Task 3

Block
3

Block
3

Tim
e

Single
Threaded

Block 1

Block 3

Block 3

Thr1 Thr2 Thr3 Thr4

Block 2
Task 2

Block 2
Task 1

Block 2
Task 3

Time
Saved

Idle

Idle

49

When are Tasks Guaranteed to Complete
 Tasks are gauranteed to be complete at thread barriers

#pragma omp barrier

 … or task barriers
#pragma omp taskwait

5050

Task Completion Example

#pragma omp parallel
{

#pragma omp task
foo();
#pragma omp barrier
#pragma omp single
{

#pragma omp task
bar();

}
}

Multiple foo tasks
created here – one for

each thread

All foo tasks guaranteed
to be completed here

One bar task created
here

bar task guaranteed to
be completed here

51

Recursive Matrix Multiplication
 Consider recursive matrix multiplication, described in

next 3 slides
 How would you parallelize this program using OpenMP

tasks?

 What data considerations need to be addressed?

52

Recursive Matrix Multiplication
 Quarter each input matrix and output matrix

 Treat each submatrix as a single element and multiply

 8 submatrix multiplications, 4 additions

A B C

A1,1 A1,2

A2,1 A2,2

B1,1 B1,2

B2,1 B2,2

C1,1 C1,2

C2,1 C2,2

C1,1 = A1,1·B1,1 + A1,2·B2,1

C2,1 = A2,1·B1,1 + A2,2·B2,1

C1,2 = A1,1·B1,2 + A1,2·B2,2

C2,2 = A2,1·B1,2 + A2,2·B2,2

53

How to Multiply Submatrices?
 Use the same routine that is computing the full matrix

multiplication
 Quarter each input submatrix and output submatrix

 Treat each sub-submatrix as a single element and multiply

A B C

A1,1 A1,2

A2,1 A2,2

B1,1 B1,2

B2,1 B2,2

C1,1 C1,2

C2,1 C2,2

C111,1 = A111,1·B111,1 + A111,2·B112,1

C1,1 = A1,1·B1,1 + A1,2·B2,1

A1,1

A111,1 A111,2

A112,1 A112,2

B1,1

B111,1 B111,2

B112,1 B112,2

C1,1

C111,1 C111,2

C112,1 C112,2

54

C1,1 = A1,1·B1,1 + A1,2·B2,1

C2,1 = A2,1·B1,1 + A2,2·B2,1

C1,2 = A1,1·B1,2 + A1,2·B2,2

C2,2 = A2,1·B1,2 + A2,2·B2,2

Recursively Multiply Submatrices

 Also need stopping criteria for recursion

void matmultrec(int mf, int ml, int nf, int nl, int pf, int pl,

double **A, double **B, double **C)

{// Dimensions: A[mf..ml][pf..pl] B[pf..pl][nf..nl] C[mf..ml][nf..nl]

// C11 += A11*B11

matmultrec(mf, mf+(ml-mf)/2, nf, nf+(nl-nf)/2, pf, pf+(pl-pf)/2, A, B, C);

// C11 += A12*B21

matmultrec(mf, mf+(ml-mf)/2, nf, nf+(nl-nf)/2, pf+(pl-pf)/2, pl, A, B, C);

. . .

}

 Need range of indices to define each submatrix to be used

55

#define THRESHOLD 32768 // product size below which simple matmult code is called

void matmultrec(int mf, int ml, int nf, int nl, int pf, int pl,
double **A, double **B, double **C)

// Dimensions: A[mf..ml][pf..pl] B[pf..pl][nf..nl] C[mf..ml][nf..nl]

{
if ((ml-mf)*(nl-nf)*(pl-pf) < THRESHOLD)

matmult (mf, ml, nf, nl, pf, pl, A, B, C);
else
{

#pragma omp task
{

matmultrec(mf, mf+(ml-mf)/2, nf, nf+(nl-nf)/2, pf, pf+(pl-pf)/2, A, B, C); // C11 += A11*B11
matmultrec(mf, mf+(ml-mf)/2, nf, nf+(nl-nf)/2, pf+(pl-pf)/2, pl, A, B, C); // C11 += A12*B21

}
#pragma omp task
{

matmultrec(mf, mf+(ml-mf)/2, nf+(nl-nf)/2, nl, pf, pf+(pl-pf)/2, A, B, C); // C12 += A11*B12
matmultrec(mf, mf+(ml-mf)/2, nf+(nl-nf)/2, nl, pf+(pl-pf)/2, pl, A, B, C); // C12 += A12*B22

}
#pragma omp task
{

matmultrec(mf+(ml-mf)/2, ml, nf, nf+(nl-nf)/2, pf, pf+(pl-pf)/2, A, B, C); // C21 += A21*B11
matmultrec(mf+(ml-mf)/2, ml, nf, nf+(nl-nf)/2, pf+(pl-pf)/2, pl, A, B, C); // C21 += A22*B21

}
#pragma omp task
{

matmultrec(mf+(ml-mf)/2, ml, nf+(nl-nf)/2, nl, pf, pf+(pl-pf)/2, A, B, C); // C22 += A21*B12
matmultrec(mf+(ml-mf)/2, ml, nf+(nl-nf)/2, nl, pf+(pl-pf)/2, pl, A, B, C); // C22 += A22*B22

}
#pragma omp taskwait

}
}

Recursive Solution

 Could be executed in parallel as 4 tasks
 Each task executes the two calls for the same output submatrix of C

56

International Workshop on OpenMP (IWOMP)

57

References
 The content expressed in this chapter comes from
 Clay Breshears, Intel Corp. clay.breshears@intel.com

 J. Mark Bull, EPCC, The University of Edinburgh,
markb@epcc.ed.ac.uk

 Tim Mattson, Intel Corp. timothy.g.mattson@intel.com

 Lawrence Livermore National Laboratory, OpenMP Tutorial,
https://computing.llnl.gov/tutorials/openMP/

mailto:clay.breshears@intel.com
mailto:markb@epcc.ed.ac.uk
mailto:timothy.g.mattson@intel.com

	Parallel Programming Principle and Practice��Lecture 6 — Shared Memory Programming OpenMP
	Outline
	Architecture for Shared Memory Model
	Thread Based Parallelism
	Explicit Parallelism
	OpenMP Overview
	OpenMP Release History
	OpenMP Core Syntax
	OpenMP Overview: How do Threads Interact?
	Outline
	OpenMP Programming Model
	Thread Creation: Parallel Regions
	Thread Creation: Parallel Regions
	Outline
	Loop Worksharing Constructs
	Loop Worksharing Constructs�A Motivating Example
	Loop Worksharing Constructs:�The schedule clause
	幻灯片编号 18
	Working with Loops
	Nested Loops
	Rules for Collapse Clause
	Reduction
	Reduction
	OpenMP: Reduction Operands/Initial Values
	Example: Numerical Integration
	Numerical Integration: Serial PI Program
	Numerical Integration: Solution
	Single Worksharing Construct
	Outline
	Synchronization
	Synchronization: Critical
	Synchronization: Atomic
	Synchronization: Barrier
	Master Construct
	Outline
	Data Environment: Default Storage Attributes
	Data Sharing: Examples
	Data Sharing: Changing Storage Attributes
	Data Sharing: Private Clause
	Data Sharing: Private Clause�When is Original Variable Valid?
	Firstprivate Clause
	Lastprivate Clause
	Data Sharing: Default Clause
	Outline
	What are Tasks?
	Task Construct – Explicit Task View
	Simple Task Example
	Why are Tasks Useful?
	When are Tasks Guaranteed to Complete
	Task Completion Example
	Recursive Matrix Multiplication
	Recursive Matrix Multiplication
	How to Multiply Submatrices?
	Recursively Multiply Submatrices
	Recursive Solution
	International Workshop on OpenMP (IWOMP)
	References

