
Parallel Programming Principle and Practice

Lecture 3 — Parallel Programming Models

Jin, Hai

School of Computer Science and Technology

Huazhong University of Science and Technology

2

Outline
 Introduction
 Shared Memory Model
 Message Passing Model
 GPGPU Programming Model
 Data Intensive Computing Model

INTRODUCTION
Parallel programming models

4

History
Historically, parallel architectures tied to programming models

 Divergent architectures, with no predictable pattern of growth

5

Today
 Extension of “computer architecture” to support

communication and cooperation
 OLD: Instruction Set Architecture

 NEW: Communication Architecture

 Defines
 Critical abstractions, boundaries, and primitives (interfaces)

 Organizational structures that implement interfaces (hw or sw)

 Compilers, libraries and OS are important bridges

6

Programming Model
 Description
 The mental model the programmer has about the detailed

execution of their application

 Purpose
 Improve programmer productivity

 Evaluation
 Expressibility

 Simplicity

 Performance

7

Programming Models
 von Neumann model
 Execute a stream of instructions (machine code)

 Instructions can specify
• Arithmetic operations

• Data addresses

• Next instruction to execute

 Complexity
• Track billions of data locations and millions of instructions

• Manage with
 Modular design

 High-level programming languages (isomorphic)

8

Programming Model
 What programmer uses in coding applications

 Specifies communication and synchronization

 Examples
 Multiprogramming: no communication or synch. at program level

 Shared address space: like bulletin board

 Message passing: like letters or phone calls, explicit point to point

 Data parallel: more strict, global actions on data
• Implemented with shared address space or message passing

9

Programming Models
 Parallel Programming Models
 Message passing

• Independent tasks encapsulating local data
• Tasks interact by exchanging messages

 Shared memory
• Tasks share a common address space
• Tasks interact by reading and writing this space asynchronously

 Data parallelization
• Tasks execute a sequence of independent operations
• Data usually evenly partitioned across tasks
• Also referred to as “embarrassingly parallel”

10

Evolution of Architectural Models
 Historically, machines tailored to programming models

 Programming model, communication abstraction, and machine
organization lumped together as the “architecture”

 Evolution helps understand convergence
 Identify core concepts

 Most common models
 Shared memory model, threads model, distributed memory model,

GPGPU programming model, data intensive computing model

 Other models
 Dataflow, Systolic arrays

 Examine programming model, motivation, intended
applications, and contributions to convergence

11

Taxonomy of Common
Large-Scale SAS and MP Systems

12

SHARED MEMORY MODEL
Parallel programming models

13

Shared Memory Model
 Any processor can directly reference any memory location

 Communication occurs implicitly as result of loads and stores

 Convenient
 Location transparency
 Similar programming model to time-sharing on

uniprocessors
• Except processes run on different processors
• Good throughput on multiprogrammed workloads

 Popularly known as shared memory machines or model
 Ambiguous: memory may be physically distributed among processors

14

Shared Memory Model
 Process: virtual address space plus one or more threads of control
 Portions of address spaces of processes are shared

 Writes to shared address visible to other threads, processes
 Natural extension of uniprocessor model: conventional memory

operations for comm.; special atomic operations for synchronization

15

Shared Memory Model
 In this programming model, tasks share a common address

space, which they read and write asynchronously

 Various mechanisms such as locks / semaphores may be
used to control access to the shared memory

 An advantage of this model from the programmer’s point of
view is that the notion of data “ownership” is lacking, so there
is no need to specify explicitly the communication of data
between tasks
 Program development can often be simplified

16

Shared Memory Model
 An important disadvantage in terms of performance is that it

becomes more difficult to understand and manage data
locality

 Keeping data local to the processor that works on it conserves
memory accesses, cache refreshes and bus traffic that occurs
when multiple processors use the same data

 Unfortunately, controlling data locality is hard to understand and
beyond the control of the average user

17

Implementations
 Native compilers and/or hardware translate user program

variables into actual memory addresses, which are global
 On stand-alone SMP machines, this is straightforward

 On distributed shared memory machines, such as the SGI
Origin, memory is physically distributed across a network of
machines, but made global through specialized hardware and
software

18

Recent x86 Examples

 Highly integrated, commodity systems

 On-chip: low-latency, high-bandwidth communication via shared cache

19

Example: Sun SPARC Enterprise M9000

64 SPARC64 VII+ quad-core processors (i.e. 256 cores)

Crossbar bandwidth: 245 GB/sec (snoop bandwidth)

Memory latency: 437-532 nsec (i.e. 1050-1277 cycles @ 2.4 GHz)

Higher bandwidth, but also higher latency

20

Scaling Up

Problem is interconnect: cost (crossbar) or bandwidth (bus)

Dance-hall: bandwidth is not scalable, but lower cost than crossbar
• Latencies to memory uniform, but uniformly large

Distributed memory or non-uniform memory access (NUMA)
• Construct shared address space out of simple message transactions across a

general-purpose network (e.g. read-request, read-response)

21

Example: SGI Altix UV 1000

22

THREAD MODEL
Parallel programming models

23

Threads Model
 This programming model is a type of shared memory

programming

 In the threads model of parallel programming, a single
process can have multiple, concurrent execution paths

 Perhaps the most simple analogy that can be used to
describe threads is the concept of a single program that
includes a number of subroutines

24

Threads Model
 Program is a collection of threads of control
 Can be created dynamically, mid-execution, in some languages

 Each thread has a set of private variables, e.g., local stack
variables

 Also a set of shared variables, e.g., static variables, shared
common blocks, or global heap
 Threads communicate implicitly by writing and reading shared variables
 Threads coordinate by synchronizing on shared variables

25

Amdahl’s Law
 Describes the upper bound of parallel speedup (scaling)

 Helps think about the effects of overhead

26

Where Are the Problems From?

27

Processes and Threads

28

Decomposition
 Data decomposition

 Break the entire dataset into smaller, discrete portions, then process
them in parallel

 Folks eat up a cake

 Task decomposition
 Divide the whole task based on natural set of independent sub-tasks
 Folks play a symphony

 Considerations
 Cause less or no share data
 Avoid the dependency among sub-tasks, otherwise become pipeline

29

Task and Thread
 A task consists the data and its process, and task scheduler

will attach it to a thread to be executed

 Task operation is much cheaper than threading operation

 Ease to balance workload among threads by stealing

 Suit for list, tree, map data structure

30

Task and Thread
 Considerations
 Many more tasks than threads

• More flexible to schedule the task
• Easy to balance workload

 Amount of computation within a task must be large
enough to offset overhead of managing task and thread

 Static scheduling
• Tasks are collections of separate, independent function calls or

are loop iterations

 Dynamic scheduling
• Task execution length is variable and is unpredictable
• May need an additional thread to manage a shared structure to

hold all tasks

31

Race Conditions
 Threads “race” against each other for resources

 Execution order is assumed but cannot be guaranteed

 Storage conflict is most common
 Concurrent access of same memory location by multiple threads, at

least one thread is writing

 Determinacy race and data race
 May not be apparent at all times
 Considerations

 Control shared access with critical regions
• Mutual exclusion and synchronization, critical session, atomic

 Scope variables to be local to threads
• Have a local copy for shared data
• Allocate variables on thread stack

32

Deadlock
 2 or more threads wait for each other to release a resource
 A thread waits for a event that never happen, like suspended

lock
 Most common cause is locking hierarchies
 Considerations

 Always lock and un-lock in the same order, and avoid hierarchies if
possible

 Use atomic

33

Thread Safe Routine/Library
 It functions correctly during simultaneous execution by

multiple threads
 Non-thread-safe indicators

 Access global/static variables or the heap
 Allocate/reallocate/free resources that have global scope (files)
 Indirect accesses through handles and pointers

 Considerations
 Any variables changed must be local to each thread
 Routines can use mutual exclusion to avoid conflicts with other

threads

34

Imbalanced Workload
 All threads process the data in same way, but one

thread is assigned more work, thus require more
time to complete it and impact overall performance

 Considerations
 Parallelize the inner loop
 Incline to fine-grained
 Choice the proper algorithm
 Divide and conquer, master and worker, work-stealing

35

Granularity
 A extent to which a larger entity is subdivided
 Coarse-grained means fewer and larger components
 Fine-grained means more and smaller components
 Consideration
 Fine-grained will increase the workload for task scheduler
 Coarse-grained may cause the workload imbalance
 Benchmark to set the proper granularity

36

Lock & Wait
 Protect shared data and ensure tasks executed in

right order
 Improper usage causes a side-effect
 Considerations
 Choose appropriate synchronization primitives

• tbb::atomic, InterlockedIncrement, EnterCriticalSection…

 Use non-blocking locks
• TryEnterCriticalSection, pthread_mutex_try_lock

 Reduce lock granularity
 Don’t be a lock hub
 Introduce a concurrent container for shared data

37

Parallel Algorithm

38

A Generic Development Cycle (1)
 Analysis
 Find the hotspot and understand its logic

 Design
 Identify the concurrent tasks and their dependencies
 Decompose the whole dataset with minimal overhead of

sharing or data movement between tasks
 Introduce the proper parallel algorithm
 Use proved parallel implementations
 Memory management

• Avoid heap contention among threads
• Use thread-local storage to reduce synchronization
• Detecting memory saturation in threaded applications
• Avoid and identifying false sharing among threads

39

A Generic Development Cycle (2)
 Debug for correctness
 Detect race conditions, deadlock, & memory issues

 Tune for performance
 Balance the workload
 Adjust lock & wait
 Reduce thread operation overhead
 Set the right granularity
 Benchmark for scalibility

40

Intel Generic Development Cycle

41

Summary
 Threading applications require multiple iterations of

designing, debugging, and performance tuning steps

 Use tools to improve productivity

 Unleash the power of dual-core and multi-core
processors

42

MESSAGE PASSING MODEL
Parallel programming models

43

Message Passing Architectures
 Complete computer as building block, including I/O

 Communication via explicit I/O operations

 Programming model
 directly access only private address space (local memory)

 communicate via explicit messages (send/receive)

 High-level block diagram similar to distributed-mem SAS
 But communication integrated at IO level, need not put into memory

system

 Easier to build than scalable SAS

 Programming model further from basic hardware ops
 Library or OS intervention

44

Message Passing Abstraction

 Send specifies buffer to be transmitted and sending process

 Recv specifies receiving process and application storage to receive into

 Memory to memory copy, but need to name processes

 Optional tag on send and matching rule on receive

 Many overheads: copying, buffer management, protection

45

Evolution of Message Passing

 Early machines: FIFO on each link
 Hardware close to programming model

• synchronous ops

 Replaced by DMA, enabling non-blocking
ops
• Buffered by system at destination until recv

 Diminishing role of topology
 Store & forward routing: topology important

 Introduction of pipelined routing made it less so important

 Cost is in node network interface

 Simplifies programming

46

Example: IBM Blue Gene/L

Nodes: 2 PowerPC 440s; everything except DRAM on one chip

47

Example: IBM SP-2

 Made out of essentially complete RS6000 workstations

 Network interface integrated in I/O bus (bw limited by I/O bus)

48

Toward Architectural Convergence
 Evolution and role of software have blurred boundary

 Send/recv supported on SAS machines via buffers

 Can construct global address space on MP using hashing

 Page-based (or fine-grained) shared virtual memory

 Programming models distinct, but organizations converging
 Nodes connected by general network and communication assists

 Implementations also converging, at least in high-end machines

49

Implementations
 From a programming perspective

 Message passing implementations usually comprise a library of
subroutines

 Calls to these subroutines are imbedded in source code

 The programmer is responsible for determining all parallelism

 Historically, a variety of message passing libraries have been
available since the 1980s. These implementations differed
substantially from each other making it difficult for
programmers to develop portable applications

 In 1992, the MPI Forum was formed with the primary goal of
establishing a standard interface for message passing
implementations

50

Implementations
 Part 1 of the Message Passing Interface (MPI) was

released in 1994. Part 2 (MPI-2) was released in 1996. Both
MPI specifications are available on the web at http://www-
unix.mcs.anl.gov/mpi/

 MPI is now the de facto industry standard for message
passing, replacing virtually all other message passing
implementations used for production work

 MPI implementations exist virtually for all popular parallel
computing platforms. Not all implementations include
everything in both MPI-1 and MPI-2

http://www-unix.mcs.anl.gov/mpi/
http://www-unix.mcs.anl.gov/mpi/

51

GPGPU PROGRAMMING MODEL
Parallel programming models

52

CUDA Goals: SIMD Programming
 Hardware architects love

SIMD, since it permits a very
space and energy-efficient
implementation

 However, standard SIMD
instructions on CPUs are
inflexible, and difficult to use,
difficult for a compiler to
target

 CUDA thread abstraction will
provide programmability at
the cost of additional
hardware

53

CUDA Programming Model

54

OpenCL Programming Model
 Data Parallel - SPMD

 Work-items in a work-group run the same program

 Update data structures in parallel using the work-item ID to select data
and guide execution

 Task Parallel
 One work-item per work group … for coarse grained task-level

parallelism

 Native function interface: trap-door to run arbitrary code from an
OpenCL command-queue

55

OpenCL Platform Model

56

OpenCL Memory Model

57

2D Data-Parallel execution in OpenCL

58

OpenCL Work-group / Work-unit Structure

59

Concurrency Control with OpenCL Event-Queueing

60

OpenCL’s Two Styles of Data Parallelism
 Explicit SIMD data parallelism

 The kernel defines one stream of instructions

 Parallelism from using wide vector types

 Size vector types to match native HW width

 Combine with task parallelism to exploit multiple cores

 Implicit SIMD data parallelism (i.e. shader-style)
 Write the kernel as a “scalar program”

 Use vector data types sized naturally to the algorithm

 Kernel automatically mapped to SIMD-compute-resources and cores
by the compiler/runtime/hardware

61

Data Parallel Systems
Parallel programming models

62

 Programming model
 Operations performed in parallel on each element of data structure
 Logically single thread of control, performs sequential or parallel steps
 Conceptually, a processor associated with each data element

 Architectural model
 Array of many simple, cheap processors with little memory each

• Processors don’t sequence through instructions
 Attached to a control processor that issues instructions
 Specialized and general communication, cheap

global synchronization
 Original motivation

 Matches simple differential equation solvers
 Centralize high cost of instruction fetch &

sequencing

Data Parallel Systems

63

Application of Data Parallelism
 Example

 Each PE contains an employee record with his/her salary
If salary > 100K then

salary = salary *1.05
else

salary = salary *1.10
 Logically, the whole operation is a single step
 Some processors enabled for arithmetic operation, others disabled

 Other examples
 Finite differences, linear algebra, ...
 Document searching, graphics, image processing, ...

 Example machines
 Thinking Machines CM-1, CM-2 (and CM-5)
 Maspar MP-1 and MP-2

64

Maspar MP Architecture

65

Maspar MP Architecture

66

Maspar MP Architecture

67

Dataflow Architecture
 Non-von Neumann models of computation, architecture, and

languages
 Programs are not attached to a program counter
 Executability and execution of instructions is solely

determined based on the availability of input arguments to the
instructions

 Order of instruction execution is unpredictable: i. e. behavior
is indeterministic

 Static and Dynamic dataflow machines
 Static dataflow machines: use conventional memory addresses as

data dependency tags
 Dynamic dataflow machines: use content-addressable memory (CAM)

68

Evolution and Convergence
 Rigid control structure (SIMD in Flynn taxonomy)

 SISD = uniprocessor , MIMD= multiprocessor
 Popular when cost savings of centralized sequencer high

 60s when CPU was a cabinet; replaced by vectors in mid-70s
 Revived in mid-80s when 32-bit data path slices just fit on chip
 No longer true with modern microprocessors

 Other reasons for demise
 Simple, regular applications have good locality, can do well anyway
 Loss of applicability due to hardwiring data parallelism

• MIMD machines as effective for data parallelism and more general

 Programming model converges with SPMD (single program
multiple data)
 Contributes need for fast global synchronization
 Structured global address space, implemented with either SAS or MP

69

References
 The content expressed in this chapter comes from
 Livermore Computing Center’s training materials,

(https://computing.llnl.gov/tutorials/parallel_comp/)

 Carnegie Mellon University’s public course, Parallel Computer
Architecture and Programming, (CS 418)
(http://www.cs.cmu.edu/afs/cs/academic/class/15418-
s11/public/lectures/)

 Carnegie Mellon University’s public course, Computer
Architecture, (CS 740)
(http://www.cs.cmu.edu/afs/cs/academic/class/15740-
s11/public/lectures/)

	Parallel Programming Principle and Practice�Lecture 3 — Parallel Programming Models
	Outline
	INTRODUCTION
	History
	Today
	Programming Model
	Programming Models
	Programming Model
	Programming Models
	Evolution of Architectural Models
	Taxonomy of Common �Large-Scale SAS and MP Systems
	SHARED MEMORY MODEL
	Shared Memory Model
	Shared Memory Model
	Shared Memory Model
	Shared Memory Model
	 Implementations
	Recent x86 Examples
	Example: Sun SPARC Enterprise M9000
	Scaling Up
	Example: SGI Altix UV 1000
	THREAD MODEL
	Threads Model
	Threads Model
	Amdahl’s Law
	Where Are the Problems From?
	Processes and Threads
	Decomposition
	Task and Thread
	Task and Thread
	Race Conditions
	Deadlock
	Thread Safe Routine/Library
	Imbalanced Workload
	Granularity
	Lock & Wait
	Parallel Algorithm
	A Generic Development Cycle (1)
	A Generic Development Cycle (2)
	Intel Generic Development Cycle
	Summary
	MESSAGE PASSING MODEL
	Message Passing Architectures
	Message Passing Abstraction
	Evolution of Message Passing
	Example: IBM Blue Gene/L
	Example: IBM SP-2
	Toward Architectural Convergence
	Implementations
	Implementations
	GPGPU PROGRAMMING MODEL
	CUDA Goals: SIMD Programming
	CUDA Programming Model
	OpenCL Programming Model
	OpenCL Platform Model
	OpenCL Memory Model
	2D Data-Parallel execution in OpenCL
	OpenCL Work-group / Work-unit Structure
	Concurrency Control with OpenCL Event-Queueing
	OpenCL’s Two Styles of Data Parallelism
	Data Parallel Systems
	Data Parallel Systems
	Application of Data Parallelism
	Maspar MP Architecture
	Maspar MP Architecture
	Maspar MP Architecture
	Dataflow Architecture
	Evolution and Convergence
	References

