SCTS 5

Parallel Programming Principle and Practice

Lecture 3 — Parallel Programming Models

P T
I&E’g’ Jin, Hal

\

School of Computer Science and Technology

Huazhong University of Science and Technology

SCTS 5
Outline

O Introduction

O Shared Memory Model

0 Message Passing Model

O GPGPU Programming Model

O Data Intensive Computing Model

wnp FrasELY

Parallel programming models

INTRODUCTION

SCTS (ooe
History

Historically, parallel architectures tied to programming models

[0 Divergent architectures, with no predictable pattern of growth

leimﬂun Softw

. oystem
Systolic \ YSufTwur

Arrays T ——pchitecturd— SLWD
e \ B Message Passing
Dataflow

Shared Memory

wnp Fra#nxt 4

SCLS .leccL

oy

Today

[1 Extension of “computer architecture” to support
communication and cooperation

> OLD: Instruction Set Architecture

> NEW: Communication Architecture

[0 Defines

» Critical abstractions, boundaries, and primitives (interfaces)

» Organizational structures that implement interfaces (hw or sw)

[1 Compilers, libraries and OS are important bridges

il FrHELY 5

SCTS (ooen
Programming Model

Description

» The mental model the programmer has about the detailed
execution of their application

Purpose

» Improve programmer productivity

Evaluation

> Expressibility
» Simplicity

> Performance

uny Fr##ELT 6

SCTS (ooen
Programming Models

von Neumann model

» EXxecute a stream of instructions (machine code)

» Instructions can specify
* Arithmetic operations
« Data addresses

e Next instruction to execute

» Complexity
 Track billions of data locations and millions of instructions

e Manage with
v" Modular design

v High-level programming languages (isomorphic)

wny FrA#ELT 4

SCTS (ooen
Programming Model

[1 What programmer uses in coding applications
[0 Specifies communication and synchronization
[1 Examples

» Multiprogramming: no communication or synch. at program level
» Shared address space: like bulletin board

» Message passing: like letters or phone calls, explicit point to point
» Data parallel: more strict, global actions on data

* Implemented with shared address space or message passing

uny FrAELT 3

SCTS (ooen
Programming Models

Parallel Programming Models

» Message passing
* Independent tasks encapsulating local data
« Tasks interact by exchanging messages

» Shared memory
 Tasks share a common address space
« Tasks interact by reading and writing this space asynchronously

» Data parallelization
« Tasks execute a sequence of independent operations
« Data usually evenly partitioned across tasks
e Also referred to as “embarrassingly parallel”

uny FrA#ELT o

Evolution of Architectural Models

[1 Historically, machines tailored to programming models

» Programming model, communication abstraction, and machine
organization lumped together as the “architecture”

[1 Evolution helps understand convergence

» ldentify core concepts

[0 Most common models

» Shared memory model, threads model, distributed memory model,
GPGPU programming model, data intensive computing model

[0 Other models

» Dataflow, Systolic arrays

[1 Examine programming model, motivation, intended
applications, and contributions to convergence
PP) unp Fr#ELT 0

Taxonomy of Common SCTS (omen

Large-Scale SAS and MP Systems

Largos
mulliprocessors

] aka "message passing”

I 1
l’ 1
Sharad address Dstribuied
SpacH Adrass SPACcS

i :] | !

Symmetric sharoed
momaory (SMP) Distributed shared Commodity clusters: Custom
Examples: IBM ggerver, memory (DSM) Beowull and others Clusher
SUN Sunfire
- oo
: IBM BluoGene
SGI Origin/Altix a

Constaliation clusser of
DSMe or SMPs
SGI Altix, ASC Purple

Noncache coherent:
Cray T3E, X1

0207 Uneeviar, e A rghi resereed

wny Fr#ELY 4

Parallel programming models

SHARED MEMORY MODEL

iy FrHELY

SCTS (ooen
Shared Memory Model

[1 Any processor can directly reference any memory location
» Communication occurs implicitly as result of loads and stores

[1 Convenient
» Location transparency
» Similar programming model to time-sharing on
uniprocessors

e Except processes run on different processors
* Good throughput on multiprogrammed workloads

[1 Popularly known as shared memory machines or model

» Ambiguous: memory may be physically distributed among processors

ﬁ Frahx¥ 13

SCTS (ooe
Shared Memory Model

[l Process: virtual address space plus one or more threads of control

L1 Portions of address spaces of processes are shared

Virtual address spaces for a Machine physical address space

collection of processes communicating

via shared addresses P, private
F, ;
Load —p s
. _E Common physical
2 addresses
A O
Store
P> private
Shared portion
of address space| | |
®' Py private
Private portion || |
of address space| | |
| Pg private

» Writes to shared address visible to other threads, processes
» Natural extension of uniprocessor model: conventional memory
operations for comm.; special atomic operations for synchronization

ﬁ#‘f’ﬁ’frﬁk? 14

SCTS (ooen
Shared Memory Model

L1 In this programming model, tasks share a common address
space, which they read and write asynchronously

[1 Various mechanisms such as locks / semaphores may be
used to control access to the shared memory

[1 An advantage of this model from the programmer’s point of
view Is that the notion of data “ownership” is lacking, so there
IS N0 need to specify explicitly the communication of data
between tasks

» Program development can often be simplified

gy Fra#xT 5

SCTS (ooen
Shared Memory Model

1 An important disadvantage in terms of performance is that it

becomes more difficult to understand and manage data
locality

» Keeping data local to the processor that works on it conserves
memory accesses, cache refreshes and bus traffic that occurs
when multiple processors use the same data

» Unfortunately, controlling data locality is hard to understand and
beyond the control of the average user

uny Fr#ELT 16

SCTS (ooen
Implementations

[1 Native compilers and/or hardware translate user program
variables into actual memory addresses, which are global

» On stand-alone SMP machines, this is straightforward

[1 On distributed shared memory machines, such as the SGI
Origin, memory is physically distributed across a network of
machines, but made global through specialized hardware and

software

gy Fra#nxt o

d
¥ = S &
= r...'r - - | |
I i rw
;. EL £F
i il .Hil
E— [}
& I
R rI 'I.
ol
kil
-
-

ikl
'.Lh

3
== ares o
P

&
]

Intel's Quad Core i7 AMD's Quad-Core Phenom II

» Highly integrated, commodity systems
» On-chip: low-latency, high-bandwidth communication via shared cache

iy FrA#ELF 8

SCTS (ooe
Example: Sun SPARC Enterprise M9000

L

el rad
o O 1
R o

»64 SPARC64 VII+ quad-core processors (i.e. 256 cores)
» Crossbar bandwidth: 245 GB/sec (snoop bandwidth)
»Memory latency: 437-532 nsec (i.e. 1050-1277 cycles @ 2.4 GHz)

»Higher bandwidth, but also higher latency
ﬁ FrHH LT 19

Scaling Up

-

hi & & GO

¢

M

¢'

(Network >

’

b

< Metwiork

;

SCTS 5_

;

s

M

5

M

I:I

“Dance hall”

»Problem is interconnect: cost (crossbar) or bandwidth (bus)

5 LI

$

Distributed memory

»Dance-hall: bandwidth is not scalable, but lower cost than crossbar

e Latencies to memory uniform, but uniformly large

» Distributed memory or non-uniform memory access (NUMA)

 Construct shared address space out of simple message transactions across a

general-purpose network (e.g. read-request, read-response)

il Fr#ELF 50

. 256 socket (2048 core) fat-tree
Blacklight at the PSC (4096 cores) (this size is doubled in Blacklight via a torus)

i

)

oo
e
v

Bt
L
ok

0

g

.

¢

+ Scales up to 131,072 cores
- 156B/sec links

- Hardware cache coherence

Iy

i\

b

o FTAELT

SCTS é‘_

Parallel programming models

THREAD MODEL

iy FrAHELF 5

SCTS 5
Threads Model

[1 This programming model is a type of shared memory
programming

1 In the threads model of parallel programming, a single
process can have multiple, concurrent execution paths

[1 Perhaps the most simple analogy that can be used to
describe threads is the concept of a single program that
Includes a number of subroutines

ﬁ Frahx¥ 23

Threads Model

[1 Program is a collection of threads of control

SCTS 5

» Can be created dynamically, mid-execution, in some languages
[l Each thread has a set of private variables, e.g., local stack
variables
[1 Also a set of shared variables, e.g., static variables, shared

common blocks, or global heap
» Threads communicate implicitly by writing and reading shared variables
» Threads coordinate by synchronizing on shared variables

/

yd

Shared memory

e
4\ S=-nl+

Private
memory

=

ﬁ Fraux¥ o4

SCTS (ooe
Amdahl’s Law

[J Describes the upper bound of parallel speedup (scaling)

1 Helps think about the effects of overhead

Gene M. Amdahl, *Validity of the Single-Processor Approach
to Achieving Large Scale Computing Capabilities™, 1967

Amdahl’s law (Amdahl’s speedup model)
I

Spffdup;hrrﬂfuﬁn' = f
(I-7)+=

i

. |
]] m SPEEdHPAm:Fm'J." = I f

f1s the parallel portion

Implications
ﬁ Fraurd o5

SCTS 5
Where Are the Problems From?

To work in parallel

e S
,.! ~ Sy
Divide the data Thread operation
/ \ N o
’ \ = 'S
Share data \ Overhead
T P
1
\
ff Y
Protect data_ Granularity
’ ~
! ~

Y
— Lock&wait

Remove the error

oy FrHELT o6

SCTS &l_

Processes and Threads

thread
main()
- ® thread

Code segment

Data segment

e Modern operating systems
load programs as processes
— Resource holder
— Execution

e A process starts executing at
its entry point as a thread

e Threads can create other
threads within the process

e All threads within a process
share code & data segments

ﬁ#"”’l’fﬁkff 27

SCTS (ooen
Decomposition

[1 Data decomposition

» Break the entire dataset into smaller, discrete portions, then process
them in parallel

» Folks eat up a cake

[1 Task decomposition
» Divide the whole task based on natural set of independent sub-tasks
» Folks play a symphony

[1 Considerations
» Cause less or no share data
» Avoid the dependency among sub-tasks, otherwise become pipeline

iy FrasELY o8

SCTS é‘e_
Task and Thread

[J A task consists the data and its process, and task scheduler
will attach it to a thread to be executed

[J Task operation is much cheaper than threading operation
[1 Ease to balance workload among threads by stealing
1 Suit for list, tree, map data structure

\ / Task 5 | | Task 4 | [Task 1

Task n || Task n-1

ﬁ#’“f’ﬂ’ﬂfﬁk? 29

SCTS 5

Task and Thread

>

Considerations

Many more tasks than threads
* More flexible to schedule the task
« Easy to balance workload

Amount of computation within a task must be large
enough to offset overhead of managing task and thread

Static scheduling

« Tasks are collections of separate, independent function calls or
are loop iterations

Dynamic scheduling
e Task execution length is variable and is unpredictable

 May need an additional thread to manage a shared structure to
hold all tasks

g Franxt 3o

SCTS 5

Race Conditions

O

O 0O O

Threads “race” against each other for resources
» Execution order is assumed but cannot be guaranteed

Storage conflict is most common

» Concurrent access of same memory location by multiple threads, at
least one thread is writing

Determinacy race and data race
May not be apparent at all times

Considerations
» Control shared access with critical regions
* Mutual exclusion and synchronization, critical session, atomic

» Scope variables to be local to threads
 Have a local copy for shared data
« Allocate variables on thread stack

unp FrA#ELF 5

SCTS 5
Deadlock

[1 2 or more threads wait for each other to release a resource

[1 A thread waits for a event that never happen, like suspended
lock

[Most common cause is locking hierarchies

[1 Considerations
» Always lock and un-lock in the same order, and avoid hierarchies if

pOSSIble DWORD WINAPI threadA (LPVOID arg)

> Use at0m|C EnterCriticalSection (&

EnterCriticalSectios)
e (L, A ThreadB: L2, then L1
LeaveCriticalSection (&L2) ;
LeaveCriticalSection(&Ll) ;
return (0) ;

DWORD WINAPI threadB (LPVOID arg)
{
ThreadA: L1, then L2 EnterCriticalSection (&L2) ;
EnterCriticalSection (&Ll) ;
processB (data2, datal) ;
LeaveCriticalSection (&Ll) ;
LeaveCriticalSection(&L2) ;

return(0) ;

iy FrHELT 3

SCTS (ooen
Thread Safe Routine/Library

L1 It functions correctly during simultaneous execution by
multiple threads

[1 Non-thread-safe indicators
» Access global/static variables or the heap
» Allocate/reallocate/free resources that have global scope (files)
» Indirect accesses through handles and pointers

[1 Considerations
» Any variables changed must be local to each thread

» Routines can use mutual exclusion to avoid conflicts with other

threads . .
It is better to make a routine reentrant

than to add synchronization
Avoids potential overhead

g FrH#xT 33

SCTS (ooe
Imbalanced Workload

All threads process the data in same way, but one
thread is assigned more work, thus require more
time to complete it and impact overall performance

E Busy
W [dle

awin|

Considerations

» Parallelize the inner loop

» Incline to fine-grained

» Choice the proper algorithm
» Divide and conguer, master and worker, work-stealing

g FrH#xT 3,

SCTS (ooen
Granularity

A extent to which a larger entity is subdivided
Coarse-grained means fewer and larger components
Fine-grained means more and smaller components

Consideration

» Fine-grained will increase the workload for task scheduler
» Coarse-grained may cause the workload imbalance
» Benchmark to set the proper granularity

gy FrH#xT 35

SCTS 5
Lock & Wait

Protect shared data and ensure tasks executed In
right order

Improper usage causes a side-effect

Considerations

» Choose appropriate synchronization primitives
e thh::atomic, InterlockedIincrement, EnterCriticalSection...

» Use non-blocking locks
« TryEnterCriticalSection, pthread _mutex_try lock

Reduce lock granularity
Don’'t be a lock hub
Introduce a concurrent container for shared data

YV VYV VY

unp Fr#ELY 36

Parallel Algorithm

Organized by data

"\

Recursive?

Linear?

!

-~

Geometric
Decomposition

l

il T

Recursive
Data

SCTS 5

How is the computation structured?

Organized by tasks

Linear?

!

e

oy

'\

Recursive?

-

!

-

e

Task
Parallelism

Divide and
Conquer

Organized by flow

of data

Regular?

l

Irregular?

L

.

Pipeline

Event-based
Coordination

e

-

b

iy FrAELT 55

e

SCTS é‘

A Generic Development Cycle (1)

>

>
>

>

Y VYV

Analysis

Find the hotspot and understand its logic

Design

|dentify the concurrent tasks and their dependencies

Decompose the whole dataset with minimal overhead of
sharing or data movement between tasks

Introduce the proper parallel algorithm
Use proved parallel implementations

Memory management

* Avoid heap contention among threads

e Use thread-local storage to reduce synchronization

« Detecting memory saturation in threaded applications

* Avoid and identifying false sharing among thread”E FEARLT 8

SCTS (ooen
A Generic Development Cycle (2)

Debug for correctness
» Detect race conditions, deadlock, & memory issues

Tune for performance

» Balance the workload

Adjust lock & walit

Reduce thread operation overhead
Set the right granularity
Benchmark for scalibility

YV V V V

g FrH#xT 39

SCLS .leccL
Intel Generic Development Cycle

oy

() Analysis
, —Intel® VTune™ Amplifier XE

(Design (Introduce Threads)

—Intel® IPP, MKL, Ct, TBB

—Intel® Parallel Composer XE with OpenMP*, Cilk, CEAN
4 and other technologies.

Debug for correctness
(—Intel® Parallel Inspector XE
—Intel Debugger
"l Tune for performance
— Intel® VTune™ Amplifier XE

il FrHELT 40

SCTS 5
Summary

Threading applications require multiple iterations of
designing, debugging, and performance tuning steps

Use tools to improve productivity

Unleash the power of dual-core and multi-core
Processors

mnp Fra#xt 4

SCTS 5

Parallel programming models

MESSAGE PASSING MODEL

il FraELF 4

SCTS (ooen
Message Passing Architectures

[0 Complete computer as building block, including 1/O

» Communication via explicit 1/0O operations

[0 Programming model
» directly access only private address space (local memory)

» communicate via explicit messages (send/receive)

[1 High-level block diagram similar to distributed-mem SAS

» But communication integrated at 10 level, need not put into memory
system

» Easier to build than scalable SAS

1 Programming model further from basic hardware ops

» Library or OS intervention)
ﬁ$'f{ﬂ’«}rﬁ)§? 43

Message Passing Abstraction

vV V VYV VY V

Address X

Local process
address space

ProcessP

SendX, Q, t

Match

SCTS 5

ReceiveY P, T

Local process
address space

Process @

Address Y

Send specifies buffer to be transmitted and sending process

Recv specifies receiving process and application storage to receive into

Memory to memory copy, but need to name processes

Optional tag on send and matching rule on receive

Many overheads: copying, buffer management, protection
il FraELF 44

[l Early machines: FIFO on each link

>

[1 Diminishing role of topology

>

>
>
>

Hardware close to programming model

* synchronous ops

Replaced by DMA, enabling non-blocking
ops

» Buffered by system at destination until recv

Store & forward routing: topology important
Introduction of pipelined routing made it less so important
Cost is in node network interface

Simplifies programming

il FrHELT 45

SCTS (ooe
Example: IBM Blue Gene/L

Bluetiene/L. Node ASI

PLE i4:1} Processsr Local Bus Fuﬂ*ﬁgﬂgﬂ
SRARLE _lJ__./j
Lz [~ .
440 CPU — Shared L3
¥ puttery | dieectoryfor| | ehRian
I.n li = [2
_i llr T HEM Cache Lﬂﬂ-lﬂll
Organized #—& Multibank
BT TE|) ﬁﬁw s
M40 CPU |g—i12
o | MO proc Bult ECC
 Doubde FPLT " - Bway sel
Asaocialiva
F" i i
Link buffers and
JTAG IPL Routie DOR Control
Efhgpet And RAS : with _En:
; t;E-‘: ITAG Netwerk b Bidirectional 1.4 144 bid wide DDR
Filsratict i s Dinks & 2.8
Li ¥ iiree

Nodes: 2 PowerPC 440s; everything except DRAM on one chip

ﬁ#’“f’ﬁ’ﬁkff 46

SCTS §e__

Example: IBM SP-2

Fower 2
CPU IBM 5P-2 node

- IMD>
Emaory ous
S
3

General interconnection
network formed from Memory
B-port switches controller

d-way
=t intedeaved
DRAM

— i I
{ MicroChannel bus >
v | NIC

EHE \ELJ

k-

.

—
=il

-5

» Made out of essentially complete RS6000 workstations

» Network interface integrated in I/O bus (bw limited by I/O bus)

g FrH#xT 4

SCLS feeer
Toward Architectural Convergence

[1 Evolution and role of software have blurred boundary

» Send/recv supported on SAS machines via buffers
» Can construct global address space on MP using hashing
» Page-based (or fine-grained) shared virtual memory

[J Programming models distinct, but organizations converging

» Nodes connected by general network and communication assists

» Implementations also converging, at least in high-end machines

gy Fra#nxT 48

SCTS (ooen
Implementations

[l From a programming perspective

» Message passing implementations usually comprise a library of
subroutines

» Calls to these subroutines are imbedded in source code

» The programmer is responsible for determining all parallelism

[1 Historically, a variety of message passing libraries have been
available since the 1980s. These implementations differed
substantially from each other making it difficult for
programmers to develop portable applications

1 In 1992, the MPI Forum was formed with the primary goal of
establishing a standard interface for message passing

Implementations
il FrHELT 4

SCTS (ooen
Implementations

[l Part 1 of the Message Passing Interface (MPI) was
released in 1994. Part 2 (MPI-2) was released in 1996. Both
MPI specifications are available on the web at http://www-
unix.mcs.anl.gov/mpi/

1 MPIis now the de facto industry standard for message
passing, replacing virtually all other message passing
Implementations used for production work

L1 MPI implementations exist virtually for all popular parallel
computing platforms. Not all immplementations include
everything in both MPI-1 and MPI-2

g FrH#xT 5o

http://www-unix.mcs.anl.gov/mpi/
http://www-unix.mcs.anl.gov/mpi/

Parallel programming models

GPGPU PROGRAMMING MODEL

unp FrHELY 5

SCTS (ooe
CUDA Goals: SIMD Programming

[0 Hardware architects love
SIMD, since it permits a very
space and energy-efficient
implementation

[0 However, standard SIMD
instructions on CPUs are
inflexible, and difficult to use,
difficult for a compiler to
target

4 way SIMD (SSE) 16 way SIMD (LRB)

Aoune XE wE X D

— = " = [0 CUDA thread abstraction will

Gﬁb (J%—?\) provide programmability at
; . ; , the cost of additional
eRlralon w5 0P Wa Ko DR YT 1 0F v LRSI)]

hardware

ﬁ#’*ﬁﬁkff 52

SCTS (ooe
CUDA Programming Model

Host Device EI'H
Grid 1 Block (0, 0) Block (1, 0)
Kernel 1 — Block Block Block
(0, 0) (1,0) (2,0)

Block Block . Block
01 (L) | (21

'Grid 2 ’,"‘
," ' Iﬂwud{n,n} ﬂnad{l,n}J Iﬂnnd{ﬂ,n} ﬂnad{l,n}J
Kemel2 = i {‘
; R 44 4 Y 4
' .""‘ ."T] I] | II!‘!_;iI. - - - -
Block (1, 1)

The host issues a succession of kemel invocations to the davice. Each kemel is executed as a batch
of threads crganized as a grid of thread blocks

OpenCL Programming Model

[1 Data Parallel - SPMD

» Work-items in a work-group run the same program

» Update data structures in parallel using the work-item ID to select data

and guide execution

[1 Task Parallel

>

One work-item per work group ... for coarse grained task-level
parallelism

Native function interface: trap-door to run arbitrary code from an
OpenCL command-queue

il FrHELT o4

SCTS (ooe
OpenCL Platform Model

Processing

sigierys, Host

™

Compute Device

iy FrA#ELT 55

SCTS (ooe
OpenCL Memory Model

Private Private Private Private
Memory Memory Memory Memory

Work-Item Work-Item Work-Item Work-Item

I Local Memory | Local Memory

Workgroup Workgroup

| Global/Constant Memory I

Compute Device

Host Memory

SCLS .leccL

2D Data-Parallel execution in OpenCL

Work Group
/

f Local Size(0)

15 i 11

(T)92IS |e207

Global Size(1)

Global Size(0)

gy Fra#nxt 5

SCTS (ooe
OpenCL Work-group / Work-unit Structure

Synchronization
between work =
items possible

- Work-group

—— work-item

Cannot
synchronize <
outside work- group

iy Fr##ELY 58

SCLCS _/fcecr
Concurrency Control with OpenCL Event-Queueing

Kernel 2 starts before
the results from Kernel
are read

Kernel 2 waits for an event from
Kernel 1 and does not start until
the results are read

Enqueue Kernel 1
Enqueue Kernel 2
Enqueue Kernel 1
Enqueue Kernel 2

|

o [T e oz

ExX EX 3
v T o T |

TIME w—— Time —p

SCTS (ooe
OpenCL’s Two Styles of Data Parallelism

[1 Explicit SIMD data parallelism
» The kernel defines one stream of instructions
» Parallelism from using wide vector types
» Size vector types to match native HW width

» Combine with task parallelism to exploit multiple cores

[1 Implicit SIMD data parallelism (i.e. shader-style)
» Write the kernel as a “scalar program”

» Use vector data types sized naturally to the algorithm

» Kernel automatically mapped to SIMD-compute-resources and cores
by the compiler/runtime/hardware

Both approaches are viable CPU options

il Fr#ELT 60

SCTS 5_

Parallel programming models

Data Parallel Systems

unp Fr#ELY 6

Data Parallel Systems

[0 Programming model

» Operations performed in parallel on each element of data structure
» Logically single thread of control, performs sequential or parallel steps
» Conceptually, a processor associated with each data element

[1 Architectural model

» Array of many simple, cheap processors with little memory each

* Processors don’t sequence through instructions

» Attached to a control processor that issues instructions| Control

» Specialized and general communication, cheap
global synchronization
[1 Original motivation
» Matches simple differential equation solvers
» Centralize high cost of instruction fetch &
seqguencing

processor

PE |=» o000 «-»| PE

- U
m
A
Y

] ' '

i)
m
A
Y

PE |=» o0 0o w»| PE

0 o0oo (oJR eyl (o] e le]

' '

#

-~ 00 O -

_?#MM%’ 62

SCTS (ooen
Application of Data Parallelism

[Example

» Each PE contains an employee record with his/her salary
If salary > 100K then

salary = salary *1.05
else

salary = salary *1.10

» Logically, the whole operation is a single step
» Some processors enabled for arithmetic operation, others disabled

[1 Other examples
» Finite differences, linear algebra, ...
» Document searching, graphics, image processing, ...

[0 Example machines
» Thinking Machines CM-1, CM-2 (and CM-5)

» Maspar MP-1 and MP-2
g Fra#xT o

SCCS feser
Maspar MP Architecture

2

ﬁ**ﬁﬁkff 64

Front
End

ACU

| ACU-PE bus

~_ sysitem bus

Global Router

ﬁ#“f’f‘”ﬁkff 65

Maspar MP Architecture

NW ala \
...... NE memary |\
PE PE l
processor
PE PE PE
PE
PE PE

ﬁl
w o i
BEE
HEE
z HEHB
PE PE PE e HEE
HER
- N

PE @

PE

SCTS é‘

Dataflow Architecture

O

O

Non-von Neumann models of computation, architecture, and
languages

Programs are not attached to a program counter
Executability and execution of instructions is solely
determined based on the availability of input arguments to the
Instructions

Order of instruction execution is unpredictable: I. e. behavior
IS Indeterministic

Static and Dynamic dataflow machines

» Static dataflow machines: use conventional memory addresses as
data dependency tags
» Dynamic dataflow machines: use content-addressable memory (CAM)

iy Fr#ELT 67

SCTS 5

Evolution and Convergence

O

O

Rigid control structure (SIMD in Flynn taxonomy)
» SISD = uniprocessor , MIMD= multiprocessor

Popular when cost savings of centralized sequencer high
» 60s when CPU was a cabinet; replaced by vectors in mid-70s

» Revived in mid-80s when 32-bit data path slices just fit on chip
» No longer true with modern microprocessors

Other reasons for demise
» Simple, regular applications have good locality, can do well anyway
» Loss of applicability due to hardwiring data parallelism

« MIMD machines as effective for data parallelism and more general
Programming model converges with SPMD (single program

multiple data)
» Contributes need for fast global synchronization

» Structured global address space, implemented with either SAS or MP
il FrHELT 68

SCTS 5

References

[1 The content expressed in this chapter comes from

>

>

Livermore Computing Center’s training materials,
(https://computing.linl.gov/tutorials/parallel _comp/)

Carnegie Mellon University’s public course, Parallel Computer
Architecture and Programming, (CS 418)
(http://www.cs.cmu.edu/afs/cs/academic/class/15418-
sl1l1/public/lectures/)

Carnegie Mellon University’s public course, Computer
Architecture, (CS 740)
(http://www.cs.cmu.edu/afs/cs/academic/class/15740-
sl1l1/public/lectures/)

wnp Fra#xT 69

	Parallel Programming Principle and Practice�Lecture 3 — Parallel Programming Models
	Outline
	INTRODUCTION
	History
	Today
	Programming Model
	Programming Models
	Programming Model
	Programming Models
	Evolution of Architectural Models
	Taxonomy of Common �Large-Scale SAS and MP Systems
	SHARED MEMORY MODEL
	Shared Memory Model
	Shared Memory Model
	Shared Memory Model
	Shared Memory Model
	 Implementations
	Recent x86 Examples
	Example: Sun SPARC Enterprise M9000
	Scaling Up
	Example: SGI Altix UV 1000
	THREAD MODEL
	Threads Model
	Threads Model
	Amdahl’s Law
	Where Are the Problems From?
	Processes and Threads
	Decomposition
	Task and Thread
	Task and Thread
	Race Conditions
	Deadlock
	Thread Safe Routine/Library
	Imbalanced Workload
	Granularity
	Lock & Wait
	Parallel Algorithm
	A Generic Development Cycle (1)
	A Generic Development Cycle (2)
	Intel Generic Development Cycle
	Summary
	MESSAGE PASSING MODEL
	Message Passing Architectures
	Message Passing Abstraction
	Evolution of Message Passing
	Example: IBM Blue Gene/L
	Example: IBM SP-2
	Toward Architectural Convergence
	Implementations
	Implementations
	GPGPU PROGRAMMING MODEL
	CUDA Goals: SIMD Programming
	CUDA Programming Model
	OpenCL Programming Model
	OpenCL Platform Model
	OpenCL Memory Model
	2D Data-Parallel execution in OpenCL
	OpenCL Work-group / Work-unit Structure
	Concurrency Control with OpenCL Event-Queueing
	OpenCL’s Two Styles of Data Parallelism
	Data Parallel Systems
	Data Parallel Systems
	Application of Data Parallelism
	Maspar MP Architecture
	Maspar MP Architecture
	Maspar MP Architecture
	Dataflow Architecture
	Evolution and Convergence
	References

