
Parallel Programming Principle and Practice

Lecture 3 — Parallel Programming Models

Jin, Hai

School of Computer Science and Technology

Huazhong University of Science and Technology

2

Outline
 Introduction
 Shared Memory Model
 Message Passing Model
 GPGPU Programming Model
 Data Intensive Computing Model

INTRODUCTION
Parallel programming models

4

History
Historically, parallel architectures tied to programming models

 Divergent architectures, with no predictable pattern of growth

5

Today
 Extension of “computer architecture” to support

communication and cooperation
 OLD: Instruction Set Architecture

 NEW: Communication Architecture

 Defines
 Critical abstractions, boundaries, and primitives (interfaces)

 Organizational structures that implement interfaces (hw or sw)

 Compilers, libraries and OS are important bridges

6

Programming Model
 Description
 The mental model the programmer has about the detailed

execution of their application

 Purpose
 Improve programmer productivity

 Evaluation
 Expressibility

 Simplicity

 Performance

7

Programming Models
 von Neumann model
 Execute a stream of instructions (machine code)

 Instructions can specify
• Arithmetic operations

• Data addresses

• Next instruction to execute

 Complexity
• Track billions of data locations and millions of instructions

• Manage with
 Modular design

 High-level programming languages (isomorphic)

8

Programming Model
 What programmer uses in coding applications

 Specifies communication and synchronization

 Examples
 Multiprogramming: no communication or synch. at program level

 Shared address space: like bulletin board

 Message passing: like letters or phone calls, explicit point to point

 Data parallel: more strict, global actions on data
• Implemented with shared address space or message passing

9

Programming Models
 Parallel Programming Models
 Message passing

• Independent tasks encapsulating local data
• Tasks interact by exchanging messages

 Shared memory
• Tasks share a common address space
• Tasks interact by reading and writing this space asynchronously

 Data parallelization
• Tasks execute a sequence of independent operations
• Data usually evenly partitioned across tasks
• Also referred to as “embarrassingly parallel”

10

Evolution of Architectural Models
 Historically, machines tailored to programming models

 Programming model, communication abstraction, and machine
organization lumped together as the “architecture”

 Evolution helps understand convergence
 Identify core concepts

 Most common models
 Shared memory model, threads model, distributed memory model,

GPGPU programming model, data intensive computing model

 Other models
 Dataflow, Systolic arrays

 Examine programming model, motivation, intended
applications, and contributions to convergence

11

Taxonomy of Common
Large-Scale SAS and MP Systems

12

SHARED MEMORY MODEL
Parallel programming models

13

Shared Memory Model
 Any processor can directly reference any memory location

 Communication occurs implicitly as result of loads and stores

 Convenient
 Location transparency
 Similar programming model to time-sharing on

uniprocessors
• Except processes run on different processors
• Good throughput on multiprogrammed workloads

 Popularly known as shared memory machines or model
 Ambiguous: memory may be physically distributed among processors

14

Shared Memory Model
 Process: virtual address space plus one or more threads of control
 Portions of address spaces of processes are shared

 Writes to shared address visible to other threads, processes
 Natural extension of uniprocessor model: conventional memory

operations for comm.; special atomic operations for synchronization

15

Shared Memory Model
 In this programming model, tasks share a common address

space, which they read and write asynchronously

 Various mechanisms such as locks / semaphores may be
used to control access to the shared memory

 An advantage of this model from the programmer’s point of
view is that the notion of data “ownership” is lacking, so there
is no need to specify explicitly the communication of data
between tasks
 Program development can often be simplified

16

Shared Memory Model
 An important disadvantage in terms of performance is that it

becomes more difficult to understand and manage data
locality

 Keeping data local to the processor that works on it conserves
memory accesses, cache refreshes and bus traffic that occurs
when multiple processors use the same data

 Unfortunately, controlling data locality is hard to understand and
beyond the control of the average user

17

Implementations
 Native compilers and/or hardware translate user program

variables into actual memory addresses, which are global
 On stand-alone SMP machines, this is straightforward

 On distributed shared memory machines, such as the SGI
Origin, memory is physically distributed across a network of
machines, but made global through specialized hardware and
software

18

Recent x86 Examples

 Highly integrated, commodity systems

 On-chip: low-latency, high-bandwidth communication via shared cache

19

Example: Sun SPARC Enterprise M9000

64 SPARC64 VII+ quad-core processors (i.e. 256 cores)

Crossbar bandwidth: 245 GB/sec (snoop bandwidth)

Memory latency: 437-532 nsec (i.e. 1050-1277 cycles @ 2.4 GHz)

Higher bandwidth, but also higher latency

20

Scaling Up

Problem is interconnect: cost (crossbar) or bandwidth (bus)

Dance-hall: bandwidth is not scalable, but lower cost than crossbar
• Latencies to memory uniform, but uniformly large

Distributed memory or non-uniform memory access (NUMA)
• Construct shared address space out of simple message transactions across a

general-purpose network (e.g. read-request, read-response)

21

Example: SGI Altix UV 1000

22

THREAD MODEL
Parallel programming models

23

Threads Model
 This programming model is a type of shared memory

programming

 In the threads model of parallel programming, a single
process can have multiple, concurrent execution paths

 Perhaps the most simple analogy that can be used to
describe threads is the concept of a single program that
includes a number of subroutines

24

Threads Model
 Program is a collection of threads of control
 Can be created dynamically, mid-execution, in some languages

 Each thread has a set of private variables, e.g., local stack
variables

 Also a set of shared variables, e.g., static variables, shared
common blocks, or global heap
 Threads communicate implicitly by writing and reading shared variables
 Threads coordinate by synchronizing on shared variables

25

Amdahl’s Law
 Describes the upper bound of parallel speedup (scaling)

 Helps think about the effects of overhead

26

Where Are the Problems From?

27

Processes and Threads

28

Decomposition
 Data decomposition

 Break the entire dataset into smaller, discrete portions, then process
them in parallel

 Folks eat up a cake

 Task decomposition
 Divide the whole task based on natural set of independent sub-tasks
 Folks play a symphony

 Considerations
 Cause less or no share data
 Avoid the dependency among sub-tasks, otherwise become pipeline

29

Task and Thread
 A task consists the data and its process, and task scheduler

will attach it to a thread to be executed

 Task operation is much cheaper than threading operation

 Ease to balance workload among threads by stealing

 Suit for list, tree, map data structure

30

Task and Thread
 Considerations
 Many more tasks than threads

• More flexible to schedule the task
• Easy to balance workload

 Amount of computation within a task must be large
enough to offset overhead of managing task and thread

 Static scheduling
• Tasks are collections of separate, independent function calls or

are loop iterations

 Dynamic scheduling
• Task execution length is variable and is unpredictable
• May need an additional thread to manage a shared structure to

hold all tasks

31

Race Conditions
 Threads “race” against each other for resources

 Execution order is assumed but cannot be guaranteed

 Storage conflict is most common
 Concurrent access of same memory location by multiple threads, at

least one thread is writing

 Determinacy race and data race
 May not be apparent at all times
 Considerations

 Control shared access with critical regions
• Mutual exclusion and synchronization, critical session, atomic

 Scope variables to be local to threads
• Have a local copy for shared data
• Allocate variables on thread stack

32

Deadlock
 2 or more threads wait for each other to release a resource
 A thread waits for a event that never happen, like suspended

lock
 Most common cause is locking hierarchies
 Considerations

 Always lock and un-lock in the same order, and avoid hierarchies if
possible

 Use atomic

33

Thread Safe Routine/Library
 It functions correctly during simultaneous execution by

multiple threads
 Non-thread-safe indicators

 Access global/static variables or the heap
 Allocate/reallocate/free resources that have global scope (files)
 Indirect accesses through handles and pointers

 Considerations
 Any variables changed must be local to each thread
 Routines can use mutual exclusion to avoid conflicts with other

threads

34

Imbalanced Workload
 All threads process the data in same way, but one

thread is assigned more work, thus require more
time to complete it and impact overall performance

 Considerations
 Parallelize the inner loop
 Incline to fine-grained
 Choice the proper algorithm
 Divide and conquer, master and worker, work-stealing

35

Granularity
 A extent to which a larger entity is subdivided
 Coarse-grained means fewer and larger components
 Fine-grained means more and smaller components
 Consideration
 Fine-grained will increase the workload for task scheduler
 Coarse-grained may cause the workload imbalance
 Benchmark to set the proper granularity

36

Lock & Wait
 Protect shared data and ensure tasks executed in

right order
 Improper usage causes a side-effect
 Considerations
 Choose appropriate synchronization primitives

• tbb::atomic, InterlockedIncrement, EnterCriticalSection…

 Use non-blocking locks
• TryEnterCriticalSection, pthread_mutex_try_lock

 Reduce lock granularity
 Don’t be a lock hub
 Introduce a concurrent container for shared data

37

Parallel Algorithm

38

A Generic Development Cycle (1)
 Analysis
 Find the hotspot and understand its logic

 Design
 Identify the concurrent tasks and their dependencies
 Decompose the whole dataset with minimal overhead of

sharing or data movement between tasks
 Introduce the proper parallel algorithm
 Use proved parallel implementations
 Memory management

• Avoid heap contention among threads
• Use thread-local storage to reduce synchronization
• Detecting memory saturation in threaded applications
• Avoid and identifying false sharing among threads

39

A Generic Development Cycle (2)
 Debug for correctness
 Detect race conditions, deadlock, & memory issues

 Tune for performance
 Balance the workload
 Adjust lock & wait
 Reduce thread operation overhead
 Set the right granularity
 Benchmark for scalibility

40

Intel Generic Development Cycle

41

Summary
 Threading applications require multiple iterations of

designing, debugging, and performance tuning steps

 Use tools to improve productivity

 Unleash the power of dual-core and multi-core
processors

42

MESSAGE PASSING MODEL
Parallel programming models

43

Message Passing Architectures
 Complete computer as building block, including I/O

 Communication via explicit I/O operations

 Programming model
 directly access only private address space (local memory)

 communicate via explicit messages (send/receive)

 High-level block diagram similar to distributed-mem SAS
 But communication integrated at IO level, need not put into memory

system

 Easier to build than scalable SAS

 Programming model further from basic hardware ops
 Library or OS intervention

44

Message Passing Abstraction

 Send specifies buffer to be transmitted and sending process

 Recv specifies receiving process and application storage to receive into

 Memory to memory copy, but need to name processes

 Optional tag on send and matching rule on receive

 Many overheads: copying, buffer management, protection

45

Evolution of Message Passing

 Early machines: FIFO on each link
 Hardware close to programming model

• synchronous ops

 Replaced by DMA, enabling non-blocking
ops
• Buffered by system at destination until recv

 Diminishing role of topology
 Store & forward routing: topology important

 Introduction of pipelined routing made it less so important

 Cost is in node network interface

 Simplifies programming

46

Example: IBM Blue Gene/L

Nodes: 2 PowerPC 440s; everything except DRAM on one chip

47

Example: IBM SP-2

 Made out of essentially complete RS6000 workstations

 Network interface integrated in I/O bus (bw limited by I/O bus)

48

Toward Architectural Convergence
 Evolution and role of software have blurred boundary

 Send/recv supported on SAS machines via buffers

 Can construct global address space on MP using hashing

 Page-based (or fine-grained) shared virtual memory

 Programming models distinct, but organizations converging
 Nodes connected by general network and communication assists

 Implementations also converging, at least in high-end machines

49

Implementations
 From a programming perspective

 Message passing implementations usually comprise a library of
subroutines

 Calls to these subroutines are imbedded in source code

 The programmer is responsible for determining all parallelism

 Historically, a variety of message passing libraries have been
available since the 1980s. These implementations differed
substantially from each other making it difficult for
programmers to develop portable applications

 In 1992, the MPI Forum was formed with the primary goal of
establishing a standard interface for message passing
implementations

50

Implementations
 Part 1 of the Message Passing Interface (MPI) was

released in 1994. Part 2 (MPI-2) was released in 1996. Both
MPI specifications are available on the web at http://www-
unix.mcs.anl.gov/mpi/

 MPI is now the de facto industry standard for message
passing, replacing virtually all other message passing
implementations used for production work

 MPI implementations exist virtually for all popular parallel
computing platforms. Not all implementations include
everything in both MPI-1 and MPI-2

http://www-unix.mcs.anl.gov/mpi/
http://www-unix.mcs.anl.gov/mpi/

51

GPGPU PROGRAMMING MODEL
Parallel programming models

52

CUDA Goals: SIMD Programming
 Hardware architects love

SIMD, since it permits a very
space and energy-efficient
implementation

 However, standard SIMD
instructions on CPUs are
inflexible, and difficult to use,
difficult for a compiler to
target

 CUDA thread abstraction will
provide programmability at
the cost of additional
hardware

53

CUDA Programming Model

54

OpenCL Programming Model
 Data Parallel - SPMD

 Work-items in a work-group run the same program

 Update data structures in parallel using the work-item ID to select data
and guide execution

 Task Parallel
 One work-item per work group … for coarse grained task-level

parallelism

 Native function interface: trap-door to run arbitrary code from an
OpenCL command-queue

55

OpenCL Platform Model

56

OpenCL Memory Model

57

2D Data-Parallel execution in OpenCL

58

OpenCL Work-group / Work-unit Structure

59

Concurrency Control with OpenCL Event-Queueing

60

OpenCL’s Two Styles of Data Parallelism
 Explicit SIMD data parallelism

 The kernel defines one stream of instructions

 Parallelism from using wide vector types

 Size vector types to match native HW width

 Combine with task parallelism to exploit multiple cores

 Implicit SIMD data parallelism (i.e. shader-style)
 Write the kernel as a “scalar program”

 Use vector data types sized naturally to the algorithm

 Kernel automatically mapped to SIMD-compute-resources and cores
by the compiler/runtime/hardware

61

Data Parallel Systems
Parallel programming models

62

 Programming model
 Operations performed in parallel on each element of data structure
 Logically single thread of control, performs sequential or parallel steps
 Conceptually, a processor associated with each data element

 Architectural model
 Array of many simple, cheap processors with little memory each

• Processors don’t sequence through instructions
 Attached to a control processor that issues instructions
 Specialized and general communication, cheap

global synchronization
 Original motivation

 Matches simple differential equation solvers
 Centralize high cost of instruction fetch &

sequencing

Data Parallel Systems

63

Application of Data Parallelism
 Example

 Each PE contains an employee record with his/her salary
If salary > 100K then

salary = salary *1.05
else

salary = salary *1.10
 Logically, the whole operation is a single step
 Some processors enabled for arithmetic operation, others disabled

 Other examples
 Finite differences, linear algebra, ...
 Document searching, graphics, image processing, ...

 Example machines
 Thinking Machines CM-1, CM-2 (and CM-5)
 Maspar MP-1 and MP-2

64

Maspar MP Architecture

65

Maspar MP Architecture

66

Maspar MP Architecture

67

Dataflow Architecture
 Non-von Neumann models of computation, architecture, and

languages
 Programs are not attached to a program counter
 Executability and execution of instructions is solely

determined based on the availability of input arguments to the
instructions

 Order of instruction execution is unpredictable: i. e. behavior
is indeterministic

 Static and Dynamic dataflow machines
 Static dataflow machines: use conventional memory addresses as

data dependency tags
 Dynamic dataflow machines: use content-addressable memory (CAM)

68

Evolution and Convergence
 Rigid control structure (SIMD in Flynn taxonomy)

 SISD = uniprocessor , MIMD= multiprocessor
 Popular when cost savings of centralized sequencer high

 60s when CPU was a cabinet; replaced by vectors in mid-70s
 Revived in mid-80s when 32-bit data path slices just fit on chip
 No longer true with modern microprocessors

 Other reasons for demise
 Simple, regular applications have good locality, can do well anyway
 Loss of applicability due to hardwiring data parallelism

• MIMD machines as effective for data parallelism and more general

 Programming model converges with SPMD (single program
multiple data)
 Contributes need for fast global synchronization
 Structured global address space, implemented with either SAS or MP

69

References
 The content expressed in this chapter comes from
 Livermore Computing Center’s training materials,

(https://computing.llnl.gov/tutorials/parallel_comp/)

 Carnegie Mellon University’s public course, Parallel Computer
Architecture and Programming, (CS 418)
(http://www.cs.cmu.edu/afs/cs/academic/class/15418-
s11/public/lectures/)

 Carnegie Mellon University’s public course, Computer
Architecture, (CS 740)
(http://www.cs.cmu.edu/afs/cs/academic/class/15740-
s11/public/lectures/)

	Parallel Programming Principle and Practice�Lecture 3 — Parallel Programming Models
	Outline
	INTRODUCTION
	History
	Today
	Programming Model
	Programming Models
	Programming Model
	Programming Models
	Evolution of Architectural Models
	Taxonomy of Common �Large-Scale SAS and MP Systems
	SHARED MEMORY MODEL
	Shared Memory Model
	Shared Memory Model
	Shared Memory Model
	Shared Memory Model
	 Implementations
	Recent x86 Examples
	Example: Sun SPARC Enterprise M9000
	Scaling Up
	Example: SGI Altix UV 1000
	THREAD MODEL
	Threads Model
	Threads Model
	Amdahl’s Law
	Where Are the Problems From?
	Processes and Threads
	Decomposition
	Task and Thread
	Task and Thread
	Race Conditions
	Deadlock
	Thread Safe Routine/Library
	Imbalanced Workload
	Granularity
	Lock & Wait
	Parallel Algorithm
	A Generic Development Cycle (1)
	A Generic Development Cycle (2)
	Intel Generic Development Cycle
	Summary
	MESSAGE PASSING MODEL
	Message Passing Architectures
	Message Passing Abstraction
	Evolution of Message Passing
	Example: IBM Blue Gene/L
	Example: IBM SP-2
	Toward Architectural Convergence
	Implementations
	Implementations
	GPGPU PROGRAMMING MODEL
	CUDA Goals: SIMD Programming
	CUDA Programming Model
	OpenCL Programming Model
	OpenCL Platform Model
	OpenCL Memory Model
	2D Data-Parallel execution in OpenCL
	OpenCL Work-group / Work-unit Structure
	Concurrency Control with OpenCL Event-Queueing
	OpenCL’s Two Styles of Data Parallelism
	Data Parallel Systems
	Data Parallel Systems
	Application of Data Parallelism
	Maspar MP Architecture
	Maspar MP Architecture
	Maspar MP Architecture
	Dataflow Architecture
	Evolution and Convergence
	References

