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INTRODUCTION
Parallel programming models
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History
Historically, parallel architectures tied to programming models 

 Divergent architectures, with no predictable pattern of growth
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Today
 Extension of “computer architecture” to support 

communication and cooperation
 OLD:  Instruction Set Architecture

 NEW: Communication Architecture

 Defines 
 Critical abstractions, boundaries, and primitives (interfaces)

 Organizational structures that implement interfaces (hw or sw)

 Compilers, libraries and OS are important bridges
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Programming Model
 Description
 The mental model the programmer has about the detailed 

execution of their application

 Purpose
 Improve programmer productivity

 Evaluation
 Expressibility

 Simplicity

 Performance
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Programming Models
 von Neumann model
 Execute a stream of instructions (machine code)

 Instructions can specify
• Arithmetic operations

• Data addresses

• Next instruction to execute

 Complexity
• Track billions of data locations and millions of instructions

• Manage with
 Modular design

 High-level programming languages (isomorphic)
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Programming Model
 What programmer uses in coding applications

 Specifies communication and synchronization

 Examples
 Multiprogramming: no communication or synch. at program level

 Shared address space: like bulletin board

 Message passing: like letters or phone calls, explicit point to point

 Data parallel: more strict, global actions on data
• Implemented with shared address space or message passing
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Programming Models
 Parallel Programming Models
 Message passing

• Independent tasks encapsulating local data
• Tasks interact by exchanging messages

 Shared memory
• Tasks share a common address space
• Tasks interact by reading and writing this space asynchronously

 Data parallelization
• Tasks execute a sequence of independent operations
• Data usually evenly partitioned across tasks
• Also referred to as “embarrassingly parallel”
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Evolution of Architectural Models
 Historically, machines tailored to programming models

 Programming model, communication abstraction, and machine 
organization lumped together as the “architecture”

 Evolution helps understand convergence
 Identify core concepts

 Most common models
 Shared memory model, threads model, distributed memory model, 

GPGPU programming model, data intensive computing  model

 Other models
 Dataflow, Systolic arrays

 Examine programming model, motivation, intended 
applications, and contributions to convergence
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Taxonomy of Common 
Large-Scale SAS and MP Systems
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SHARED MEMORY MODEL
Parallel programming models
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Shared Memory Model
 Any processor can directly reference any memory location 

 Communication occurs implicitly as result of loads and stores

 Convenient
 Location transparency
 Similar programming model to time-sharing on 

uniprocessors
• Except processes run on different processors
• Good throughput on multiprogrammed workloads

 Popularly known as shared memory machines or model
 Ambiguous: memory may be physically distributed among processors
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Shared Memory Model
 Process: virtual address space plus one or more threads of control
 Portions of address spaces of processes are shared

 Writes to shared address visible to other threads, processes
 Natural extension of uniprocessor model: conventional memory 

operations for comm.;  special atomic operations for synchronization
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Shared Memory Model
 In this programming model, tasks share a common address 

space, which they read and write asynchronously

 Various mechanisms such as locks / semaphores may be 
used to control access to the shared memory

 An advantage of this model from the programmer’s point of 
view is that the notion of data “ownership” is lacking, so there 
is no need to specify explicitly the communication of data 
between tasks
 Program development can often be simplified
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Shared Memory Model
 An important disadvantage in terms of performance is that it 

becomes more difficult to understand and manage data 
locality

 Keeping data local to the processor that works on it conserves 
memory accesses, cache refreshes and bus traffic that occurs 
when multiple processors use the same data

 Unfortunately, controlling data locality is hard to understand and 
beyond the control of the average user
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Implementations
 Native compilers and/or hardware translate user program 

variables into actual memory addresses, which are global
 On stand-alone SMP machines, this is straightforward

 On distributed shared memory machines, such as the SGI 
Origin, memory is physically distributed across a network of 
machines, but made global through specialized hardware and 
software
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Recent x86 Examples

 Highly integrated, commodity systems

 On-chip: low-latency, high-bandwidth communication via shared cache
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Example: Sun SPARC Enterprise M9000

64 SPARC64 VII+ quad-core processors (i.e. 256 cores )

Crossbar bandwidth: 245 GB/sec (snoop bandwidth)

Memory latency: 437-532 nsec (i.e. 1050-1277 cycles @ 2.4 GHz)

Higher bandwidth, but also higher latency
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Scaling Up

Problem is interconnect: cost (crossbar) or bandwidth (bus) 

Dance-hall: bandwidth is not scalable, but lower cost than crossbar
• Latencies to memory uniform, but uniformly large

Distributed memory or non-uniform memory access (NUMA)
• Construct shared address space  out of simple message transactions across a 

general-purpose network (e.g. read-request, read-response)
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Example: SGI Altix UV 1000
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THREAD MODEL
Parallel programming models
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Threads Model
 This programming model is a type of shared memory 

programming

 In the threads model of parallel programming, a single 
process can have multiple, concurrent execution paths

 Perhaps the most simple analogy that can be used to 
describe threads is the concept of a single program that 
includes a number of subroutines
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Threads Model
 Program is a collection of threads of control 
 Can be created dynamically, mid-execution, in some languages 

 Each thread has a set of private variables, e.g., local stack 
variables  

 Also a set of shared variables, e.g., static variables, shared 
common blocks, or global heap 
 Threads communicate implicitly by writing and reading shared variables
 Threads coordinate by synchronizing on shared variables
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Amdahl’s Law
 Describes the upper bound of parallel speedup (scaling)

 Helps think about the effects of overhead
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Where Are the Problems From?
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Processes and Threads
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Decomposition
 Data decomposition

 Break the entire dataset into smaller, discrete portions, then process 
them in parallel

 Folks eat up a cake

 Task decomposition
 Divide the whole task based on natural set of independent sub-tasks
 Folks play a symphony

 Considerations
 Cause less or no share data
 Avoid the dependency among sub-tasks, otherwise become pipeline
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Task and Thread
 A task consists the data and its process, and task scheduler 

will attach it to a thread to be executed

 Task operation is much cheaper than threading operation

 Ease to balance workload among threads by stealing

 Suit for list, tree, map data structure
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Task and Thread
 Considerations
 Many more tasks than threads

• More flexible to schedule the task
• Easy to balance workload

 Amount of computation within a task must be large 
enough to offset overhead of managing task and thread

 Static scheduling
• Tasks are collections of separate, independent function calls or 

are loop iterations

 Dynamic scheduling
• Task execution length is variable and is unpredictable
• May need an additional thread to manage a shared structure to 

hold all tasks
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Race Conditions
 Threads “race” against each other for resources

 Execution order is assumed but cannot be guaranteed

 Storage conflict is most common
 Concurrent access of same memory location by multiple threads, at 

least one thread is writing

 Determinacy race and data race
 May not be apparent at all times
 Considerations

 Control shared access with critical regions 
• Mutual exclusion and synchronization, critical session, atomic

 Scope variables to be local to threads
• Have a local copy for shared data
• Allocate variables on thread stack
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Deadlock
 2 or more threads wait for each other to release a resource
 A thread waits for a event that never happen, like suspended 

lock
 Most common cause is locking hierarchies
 Considerations

 Always lock and un-lock in the same order, and avoid hierarchies if 
possible

 Use atomic
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Thread Safe Routine/Library
 It functions correctly during simultaneous execution by 

multiple threads
 Non-thread-safe indicators

 Access global/static variables or the heap
 Allocate/reallocate/free resources that have global scope (files)
 Indirect accesses through handles and pointers

 Considerations
 Any variables changed must be local to each thread
 Routines can use mutual exclusion to avoid conflicts with other 

threads 
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Imbalanced Workload
 All threads process the data in same way, but one 

thread is assigned more work, thus require more 
time to complete it and impact overall performance

 Considerations
 Parallelize the inner loop
 Incline to fine-grained 
 Choice the proper algorithm 
 Divide and conquer, master and worker, work-stealing
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Granularity
 A extent to which a larger entity is subdivided
 Coarse-grained means fewer and larger components
 Fine-grained means more and smaller components
 Consideration
 Fine-grained will increase the workload for task scheduler
 Coarse-grained may cause the workload imbalance
 Benchmark to set the proper granularity
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Lock & Wait
 Protect shared data and ensure tasks executed in 

right order
 Improper usage causes a side-effect
 Considerations
 Choose appropriate synchronization primitives

• tbb::atomic, InterlockedIncrement, EnterCriticalSection… 

 Use non-blocking locks 
• TryEnterCriticalSection, pthread_mutex_try_lock

 Reduce lock granularity
 Don’t be a lock hub
 Introduce a concurrent container for shared data
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Parallel Algorithm
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A Generic Development Cycle (1)
 Analysis
 Find the hotspot and understand its logic

 Design
 Identify the concurrent tasks and their dependencies 
 Decompose the whole dataset with minimal overhead of 

sharing or data movement between tasks
 Introduce the proper parallel algorithm
 Use proved parallel implementations
 Memory management

• Avoid heap contention among threads
• Use thread-local storage to reduce synchronization
• Detecting memory saturation in threaded applications
• Avoid and identifying false sharing among threads
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A Generic Development Cycle (2)
 Debug for correctness
 Detect race conditions, deadlock, & memory issues

 Tune for performance
 Balance the workload
 Adjust lock & wait 
 Reduce thread operation overhead
 Set the right granularity
 Benchmark for scalibility
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Intel Generic Development Cycle
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Summary
 Threading applications require multiple iterations of 

designing, debugging, and performance tuning steps

 Use tools to improve productivity

 Unleash the power of dual-core and multi-core 
processors
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MESSAGE PASSING MODEL
Parallel programming models
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Message Passing Architectures
 Complete computer as building block, including I/O

 Communication via explicit I/O operations

 Programming model
 directly access only private address space (local memory) 

 communicate via explicit messages (send/receive)

 High-level block diagram similar to distributed-mem SAS
 But communication integrated at IO level, need not put into memory 

system

 Easier to build than scalable SAS

 Programming model further from basic hardware ops
 Library or OS intervention
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Message Passing Abstraction

 Send specifies buffer to be transmitted and sending process

 Recv specifies receiving process and application storage to receive into

 Memory to memory copy, but need to name processes

 Optional tag on send and matching rule on receive

 Many overheads: copying, buffer management, protection
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Evolution of Message Passing

 Early machines: FIFO on each link
 Hardware close to programming model

• synchronous ops

 Replaced by DMA, enabling non-blocking 
ops
• Buffered by system at destination until recv

 Diminishing role of topology
 Store & forward routing: topology important

 Introduction of pipelined routing made it less so important

 Cost is in node network interface

 Simplifies programming
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Example: IBM Blue Gene/L

Nodes: 2 PowerPC 440s; everything except DRAM on one chip
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Example: IBM SP-2

 Made out of essentially complete RS6000 workstations

 Network interface integrated in I/O bus (bw limited by I/O bus)
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Toward Architectural Convergence
 Evolution and role of software have blurred boundary

 Send/recv supported on SAS machines via buffers

 Can construct global address space on MP using hashing

 Page-based (or fine-grained) shared virtual memory

 Programming models distinct, but organizations converging
 Nodes connected by general network and communication assists

 Implementations also converging, at least in high-end machines
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Implementations
 From a programming perspective

 Message passing implementations usually comprise a library of 
subroutines

 Calls to these subroutines are imbedded in source code

 The programmer is responsible for determining all parallelism

 Historically, a variety of message passing libraries have been 
available since the 1980s. These implementations differed 
substantially from each other making it difficult for 
programmers to develop portable applications

 In 1992, the MPI Forum was formed with the primary goal of 
establishing a standard interface for message passing 
implementations
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Implementations
 Part 1 of the Message Passing Interface (MPI) was 

released in 1994. Part 2 (MPI-2) was released in 1996. Both 
MPI specifications are available on the web at  http://www-
unix.mcs.anl.gov/mpi/

 MPI is now the de facto industry standard for message 
passing, replacing virtually all other message passing 
implementations used for production work

 MPI implementations exist virtually for all popular parallel 
computing platforms. Not all implementations include 
everything in both MPI-1 and MPI-2

http://www-unix.mcs.anl.gov/mpi/
http://www-unix.mcs.anl.gov/mpi/
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GPGPU PROGRAMMING MODEL
Parallel programming models
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CUDA Goals: SIMD Programming
 Hardware architects love 

SIMD, since it permits a very 
space and energy-efficient 
implementation

 However, standard SIMD 
instructions on CPUs are 
inflexible, and difficult to use, 
difficult for a compiler to 
target

 CUDA thread abstraction will 
provide programmability at 
the cost of additional 
hardware
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CUDA Programming Model
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OpenCL Programming Model
 Data Parallel - SPMD

 Work-items in a work-group run the same program

 Update data structures in parallel using the work-item ID to select data 
and guide execution

 Task Parallel
 One work-item per work group … for coarse grained task-level 

parallelism

 Native function interface: trap-door to run arbitrary code from an 
OpenCL command-queue
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OpenCL Platform Model
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OpenCL Memory Model



57

2D Data-Parallel execution in OpenCL
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OpenCL Work-group / Work-unit Structure
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Concurrency Control with OpenCL Event-Queueing
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OpenCL’s Two Styles of Data Parallelism
 Explicit SIMD data parallelism

 The kernel defines one stream of instructions

 Parallelism from using wide vector types

 Size vector types to match native HW width

 Combine with task parallelism to exploit multiple cores

 Implicit SIMD data parallelism (i.e. shader-style)
 Write the kernel as a “scalar program”

 Use vector data types sized naturally to the algorithm

 Kernel automatically mapped to SIMD-compute-resources and cores 
by the compiler/runtime/hardware
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Data Parallel Systems
Parallel programming models
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 Programming model
 Operations performed in parallel on each element of data structure
 Logically single thread of control, performs sequential or parallel steps
 Conceptually, a processor associated with each data element

 Architectural model
 Array of many simple, cheap processors with little memory each

• Processors don’t sequence through instructions
 Attached to a control processor that issues instructions
 Specialized and general communication, cheap 

global synchronization
 Original motivation

 Matches simple differential equation solvers
 Centralize high cost of instruction fetch & 

sequencing

Data Parallel Systems
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Application of Data Parallelism
 Example

 Each PE contains an employee record with his/her salary
If salary > 100K then

salary = salary *1.05
else

salary = salary *1.10
 Logically, the whole operation is  a single step
 Some processors enabled for arithmetic operation, others disabled

 Other examples
 Finite differences, linear algebra, ... 
 Document searching, graphics, image processing, ...

 Example machines
 Thinking Machines CM-1, CM-2 (and CM-5)
 Maspar MP-1 and MP-2
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Maspar MP Architecture
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Maspar MP Architecture
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Maspar MP Architecture
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Dataflow Architecture
 Non-von Neumann models of computation, architecture, and 

languages
 Programs are not attached to a program counter
 Executability and execution of instructions is solely 

determined based on the availability of input arguments to the 
instructions

 Order of instruction execution is unpredictable: i. e. behavior 
is indeterministic

 Static and Dynamic dataflow machines
 Static dataflow machines: use conventional memory addresses as 

data dependency tags
 Dynamic dataflow machines: use content-addressable memory (CAM)
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Evolution and Convergence
 Rigid control structure (SIMD in Flynn taxonomy)

 SISD = uniprocessor , MIMD= multiprocessor
 Popular when cost savings of centralized sequencer high

 60s when CPU was a cabinet; replaced by vectors in mid-70s
 Revived in mid-80s when 32-bit data path slices just fit on chip
 No longer true with modern microprocessors

 Other reasons for demise
 Simple, regular applications have good locality, can do well anyway
 Loss of applicability due to hardwiring data parallelism

• MIMD machines as effective for data parallelism and more general

 Programming model converges with SPMD (single program 
multiple data)
 Contributes need for fast global synchronization
 Structured global address space, implemented with either SAS or MP



69

References
 The content expressed in this chapter comes from
 Livermore Computing Center’s training materials, 

(https://computing.llnl.gov/tutorials/parallel_comp/)

 Carnegie Mellon University’s public course,  Parallel Computer 
Architecture and Programming, (CS 418) 
(http://www.cs.cmu.edu/afs/cs/academic/class/15418-
s11/public/lectures/)

 Carnegie Mellon University’s public course, Computer 
Architecture, (CS 740) 
(http://www.cs.cmu.edu/afs/cs/academic/class/15740-
s11/public/lectures/)


	Parallel Programming Principle and Practice�Lecture 3 — Parallel Programming Models
	Outline
	INTRODUCTION
	History
	Today
	Programming Model
	Programming Models
	Programming Model
	Programming Models
	Evolution of Architectural Models
	Taxonomy of Common �Large-Scale SAS and MP Systems
	SHARED MEMORY MODEL
	Shared Memory Model
	Shared Memory Model
	Shared Memory Model
	Shared Memory Model
	 Implementations
	Recent x86 Examples
	Example: Sun SPARC Enterprise M9000
	Scaling Up
	Example: SGI Altix UV 1000
	THREAD MODEL
	Threads Model
	Threads Model
	Amdahl’s Law
	Where Are the Problems From?
	Processes and Threads
	Decomposition
	Task and Thread
	Task and Thread
	Race Conditions
	Deadlock
	Thread Safe Routine/Library
	Imbalanced Workload
	Granularity
	Lock & Wait
	Parallel Algorithm
	A Generic Development Cycle (1)
	A Generic Development Cycle (2)
	Intel Generic Development Cycle
	Summary
	MESSAGE PASSING MODEL
	Message Passing Architectures
	Message Passing Abstraction
	Evolution of Message Passing
	Example: IBM Blue Gene/L
	Example: IBM SP-2
	Toward Architectural Convergence
	Implementations
	Implementations
	GPGPU PROGRAMMING MODEL
	CUDA Goals: SIMD Programming
	CUDA Programming Model
	OpenCL Programming Model
	OpenCL Platform Model
	OpenCL Memory Model
	2D Data-Parallel execution in OpenCL
	OpenCL Work-group / Work-unit Structure
	Concurrency Control with OpenCL Event-Queueing
	OpenCL’s Two Styles of Data Parallelism
	Data Parallel Systems
	Data Parallel Systems
	Application of Data Parallelism
	Maspar MP Architecture
	Maspar MP Architecture
	Maspar MP Architecture
	Dataflow Architecture
	Evolution and Convergence
	References

