
Parallel Programming Principle and Practice

Lecture 7 —

Threads programming with TBB

Jin, Hai

School of Computer Science and Technology

Huazhong University of Science and Technology

2

Outline

 Intel Threading Building Blocks

 Task-based programming

 Task Scheduler

 Scalable Memory Allocators

 Concurrent Containers

 Synchronization Primitives

3

Ways to Improve Naïve Implementation

 Programming with OS Threads can get complicated and error-prone, even

for the pattern as simple as for-loop

4

Task-basked Programming

A Better Approach to Parallelism

 Portable task-based technologies

 Intel® Threading Building Blocks (Intel® TBB)

• lets you easily write parallel C++ programs that take full

advantage of multicore performance, that are portable

and composable, and that have future-proof scalability.

• C++ template library: general task-based programming,

concurrent data containers, and more …

5

Key Feature

 It is a template library intended to ease parallel programming

for C++ developers

 Relies on generic programming to deliver high performance

parallel algorithms with broad applicability

 It provides a high-level abstraction for parallelism

 It facilitates scalable performance

 Strives for efficient use of cache, and balances load

 Portable across Linux*, Mac OS*, Windows*, and Solaris*

 Can be used in concert with other packages such as native

threads and OpenMP (fighting for thread, tbb, openmp)

 Open source and licensed versions available

6

Implement “parallel ideals” with

Templates and Language Features

7

Task-based Programming

Advantages

8

Implementing Common Parallel

Performance Patterns

9

Intel® TBB online

10

limitation

 TBB is not intended for

 I/O bound processing

 Real-time processing

 General limitations

 Direct use only from C++

 Distributed memory not supported (target is desktop)

 Requires more work than sprinkling in pragmas, for example OpenMP

11

Outline

 Intel Threading Building Blocks

 Task-based programming

 Task Scheduler

 Scalable Memory Allocators

 Concurrent Containers

 Synchronization Primitives

12

Task-based programming

 Tasks are light-weight entities at user-level

 TBB parallel algorithms map tasks onto threads automatically

 Task scheduler manages the thread pool

• Scheduler is unfair to favor tasks that have been most recent in

the cache

 Oversubscription and undersubscription of core resources is

prevented by task-stealing technique of TBB scheduler

13

Generic Parallel Algorithms

Loop parallelization

 parallel_for and parallel_reduce Load balanced parallel

execution of fixed number of independent loop iterations

 parallel_scan Template function that computes parallel

prefix (y[i] = y[i-1] op x[i])

Parallel Algorithms for Streams

 parallel_do Use for unstructured stream or pile of work;

Can add additional work to pile while running

 parallel_for_each parallel_do without an additional work

feeder

14

Generic Parallel Algorithms

Parallel Algorithms for Streams

 pipeline / parallel_pipeline

 Linear pipeline of stages - you specify maximum number of items that can be

in flight

 Each stage can be parallel or serial in-order or serial out-of-order. Stage

(filter) can also be thread-bound

 Uses cache efficiently: Each worker thread flies an item through as many

stages as possible; Biases towards finishing old items before tackling new

ones

Others

 parallel_invoke Parallel execution of a number of user-specified

functions

 parallel_sort Comparison sort with an average time complexity O(N

Log(N)); When worker threads are available parallel_sort creates

subtasks that may be executed concurrently

15

The parallel_for Template

 Requires definition of

 A range type to iterate over

• Must define a copy constructor and a destructor

• Defines is_empty ()

• Defines is_divisible ()

• Defines a splitting constructor, R(R &r, split)

 A body type that operates on the range (or a subrange)

• Must define a copy constructor and a destructor

• Defines operator()

16

Body is Generic

 Requirements for parallel_for Body

 parallel_for partitions original range into subranges, and

deals out subranges to worker threads in a way that

 Balances load

 Uses cache efficiently

 Scales

17

Range is Generic

 Requirements for parallel_for Range

 Library provides predefined ranges

 blocked_range and blocked_range2d

 You can define your own ranges

18

An Example using parallel_for (1 of 4)

 Independent iterations and fixed/known bounds

 Sequential code starting point

const int N = 100000;

void change_array(float array, int M) {

for (int i=0; i<M; i++) {

array[i] *= 2;

}

}

int main() {

float A[N];

initialize_array(A);

change_array(A,N);

return 0;

}

19

An Example using parallel_for (2 of 4)

 Include and initialize the library

int main() {

float A[N];

initialize_array(A);

change_array(A,N);

return 0;

}

#include “tbb/task_scheduler_init.h”

#include “tbb/blocked_range.h”

#include “tbb/parallel_for.h”

using namespace tbb;

int main() {

task_scheduler_init init;

float A[N];

initialize_array(A);

parallel_change_array(A,N);

return 0;

}

20

An Example using parallel_for (3 of 4)

 Use the parallel_for algorithm

void change_array(float array, int M) {

for (int i=0; i<M; i++) {

array[i] *= 2;

}

}

class ChangeArrayBody {

float *array;

public:

ChangeArrayBody (float *a): array(a) {}

void operator() (const blocked_range <int>& r) const {

for (int i=r.begin(); i != r.end(); i++) {

array[i] *= 2;

}

}

};

void parallel_change_array(float *array, int M) {

parallel_for (blocked_range <int>(0,M),

ChangeArrayBody(array), auto_partitioner()) ;

}

21

An Example using parallel_for (4 of 4)

 Use the parallel_for algorithm

22

Parallel algorithm usage example

23

Outline

 Intel Threading Building Blocks

 Task-based programming

 Task Scheduler

 Scalable Memory Allocators

 Concurrent Containers

 Synchronization Primitives

24

Task Scheduler

 Task scheduler is the engine driving Intel® Threading Building

Blocks

 Manages thread pool, hiding complexity of native thread

management

 Maps logical tasks to threads

 Parallel algorithms are based on task scheduler interface

 Task scheduler is designed to address common performance

issues of parallel programming with native threads

25

Two Execution Orders

26

Work Depth First; Steal Breadth First

27

Another example: Quicksort – Step 1

28

Quicksort – Step 2

29

Quicksort – Step 2

30

Quicksort – Step 3

31

Quicksort – Step 3

32

Quicksort – Step 4

33

Quicksort – Step 5

34

Quicksort – Step 6

35

Quicksort – Step 6

36

Quicksort – Step 7

37

The parallel_reduce Template

38

Numerical Integration Example (1 of 3)

39

parallel_reduce Example (2 of 3)

40

parallel_reduce Example (3 of 3)

41

Task cancellation

avoids unneeded work

42

Task cancellation example

43

Uncaught exceptions cancel

task execution

44

Outline

 Intel Threading Building Blocks

 Task-based programming

 Task Scheduler

 Scalable Memory Allocators

 Concurrent Containers

 Synchronization Primitives

45

Scalable Memory Allocators

 Serial memory allocation can easily become a bottleneck in

multithreaded applications

 Threads require mutual exclusion into shared heap

 False sharing - threads accessing the same cache line

 Even accessing distinct locations, cache line can ping-pong

 Intel® Threading Building Blocks offers two choices for

scalable memory allocation

 Similar to the STL template class std::allocator

 scalable_allocator

• Offers scalability, but not protection from false sharing

• Memory is returned to each thread from a separate pool

 cache_aligned_allocator

• Offers both scalability and false sharing protection

46

Outline

 Intel Threading Building Blocks

 Task-based programming

 Task Scheduler

 Scalable Memory Allocators

 Concurrent Containers

 Synchronization Primitives

47

Concurrent Containers

 TBB Library provides highly concurrent containers

 STL containers are not concurrency-friendly: attempt to modify

them concurrently can corrupt container

 Standard practice is to wrap a lock around STL containers

• Turns container into serial bottleneck

 Library provides fine-grained locking or lockless

implementations

 Worse single-thread performance, but better scalability

 Can be used with the library, OpenMP, or native threads

48

Concurrent Containers Key Features

49

Outline

 Intel Threading Building Blocks

 Task-based programming

 Task Scheduler

 Scalable Memory Allocators

 Concurrent Containers

 Synchronization Primitives

50

Synchronization Primitives

 Parallel tasks must sometimes touch shared data

 When data updates might overlap, use mutual exclusion to

avoid race

 High-level generic abstraction for HW atomic operations

 Atomically protect update of single variable

 Critical regions of code are protected by scoped locks

 The range of the lock is determined by its lifetime (scope)

 Leaving lock scope calls the destructor, making it exception

safe

 Minimizing lock lifetime avoids possible contention

 Several mutex behaviors are available

51

Atomic Execution

 atomic <T>

 T should be integral type or pointer type

 Full type-safe support for 8, 16, 32, and 64-bit integers

Operations

52

Mutex Flavors

 spin_mutex

 Non-reentrant, unfair, spins in the user space

 VERY FAST in lightly contended situations; use if you need to protect

very few instructions

 queuing_mutex

 Non-reentrant, fair, spins in the user space

 Use Queuing_Mutex when scalability and fairness are important

 queuing_rw_mutex

 Non-reentrant, fair, spins in the user space

 spin_rw_mutex

 Non-reentrant, fair, spins in the user space

 Use ReaderWriterMutex to allow non-blocking read for multiple

threads

53

One last question…

 Do not ask!

 Not even the scheduler knows how many threads really are available

• There may be other processes running on the machine

 Routine may be nested inside other parallel routines

 Focus on dividing your program into tasks of sufficient size

 Task should be big enough to amortize scheduler overhead

 Choose decompositions with good depth-first cache locality and

potential breadth-first parallelism

 Let the scheduler do the mapping

54

References

 The content expressed in this chapter is come from

 berkeley university open course

(http://parlab.eecs.berkeley.edu/2010bootcampagenda,

Shared Memory Programming with TBB, Michael Wrinn)

 http://software.intel.com/en-us/courseware

 IDF2012：Task Parallel Evolution and Revolution – Intel Cilk

Plus and Intel Threading Building Blocks

