
Parallel Programming Principle and Practice

Lecture 7 —

Threads programming with TBB

Jin, Hai

School of Computer Science and Technology

Huazhong University of Science and Technology

2

Outline

 Intel Threading Building Blocks

 Task-based programming

 Task Scheduler

 Scalable Memory Allocators

 Concurrent Containers

 Synchronization Primitives

3

Ways to Improve Naïve Implementation

 Programming with OS Threads can get complicated and error-prone, even

for the pattern as simple as for-loop

4

Task-basked Programming

A Better Approach to Parallelism

 Portable task-based technologies

 Intel® Threading Building Blocks (Intel® TBB)

• lets you easily write parallel C++ programs that take full

advantage of multicore performance, that are portable

and composable, and that have future-proof scalability.

• C++ template library: general task-based programming,

concurrent data containers, and more …

5

Key Feature

 It is a template library intended to ease parallel programming

for C++ developers

 Relies on generic programming to deliver high performance

parallel algorithms with broad applicability

 It provides a high-level abstraction for parallelism

 It facilitates scalable performance

 Strives for efficient use of cache, and balances load

 Portable across Linux*, Mac OS*, Windows*, and Solaris*

 Can be used in concert with other packages such as native

threads and OpenMP (fighting for thread, tbb, openmp)

 Open source and licensed versions available

6

Implement “parallel ideals” with

Templates and Language Features

7

Task-based Programming

Advantages

8

Implementing Common Parallel

Performance Patterns

9

Intel® TBB online

10

limitation

 TBB is not intended for

 I/O bound processing

 Real-time processing

 General limitations

 Direct use only from C++

 Distributed memory not supported (target is desktop)

 Requires more work than sprinkling in pragmas, for example OpenMP

11

Outline

 Intel Threading Building Blocks

 Task-based programming

 Task Scheduler

 Scalable Memory Allocators

 Concurrent Containers

 Synchronization Primitives

12

Task-based programming

 Tasks are light-weight entities at user-level

 TBB parallel algorithms map tasks onto threads automatically

 Task scheduler manages the thread pool

• Scheduler is unfair to favor tasks that have been most recent in

the cache

 Oversubscription and undersubscription of core resources is

prevented by task-stealing technique of TBB scheduler

13

Generic Parallel Algorithms

Loop parallelization

 parallel_for and parallel_reduce Load balanced parallel

execution of fixed number of independent loop iterations

 parallel_scan Template function that computes parallel

prefix (y[i] = y[i-1] op x[i])

Parallel Algorithms for Streams

 parallel_do Use for unstructured stream or pile of work;

Can add additional work to pile while running

 parallel_for_each parallel_do without an additional work

feeder

14

Generic Parallel Algorithms

Parallel Algorithms for Streams

 pipeline / parallel_pipeline

 Linear pipeline of stages - you specify maximum number of items that can be

in flight

 Each stage can be parallel or serial in-order or serial out-of-order. Stage

(filter) can also be thread-bound

 Uses cache efficiently: Each worker thread flies an item through as many

stages as possible; Biases towards finishing old items before tackling new

ones

Others

 parallel_invoke Parallel execution of a number of user-specified

functions

 parallel_sort Comparison sort with an average time complexity O(N

Log(N)); When worker threads are available parallel_sort creates

subtasks that may be executed concurrently

15

The parallel_for Template

 Requires definition of

 A range type to iterate over

• Must define a copy constructor and a destructor

• Defines is_empty ()

• Defines is_divisible ()

• Defines a splitting constructor, R(R &r, split)

 A body type that operates on the range (or a subrange)

• Must define a copy constructor and a destructor

• Defines operator()

16

Body is Generic

 Requirements for parallel_for Body

 parallel_for partitions original range into subranges, and

deals out subranges to worker threads in a way that

 Balances load

 Uses cache efficiently

 Scales

17

Range is Generic

 Requirements for parallel_for Range

 Library provides predefined ranges

 blocked_range and blocked_range2d

 You can define your own ranges

18

An Example using parallel_for (1 of 4)

 Independent iterations and fixed/known bounds

 Sequential code starting point

const int N = 100000;

void change_array(float array, int M) {

for (int i=0; i<M; i++) {

array[i] *= 2;

}

}

int main() {

float A[N];

initialize_array(A);

change_array(A,N);

return 0;

}

19

An Example using parallel_for (2 of 4)

 Include and initialize the library

int main() {

float A[N];

initialize_array(A);

change_array(A,N);

return 0;

}

#include “tbb/task_scheduler_init.h”

#include “tbb/blocked_range.h”

#include “tbb/parallel_for.h”

using namespace tbb;

int main() {

task_scheduler_init init;

float A[N];

initialize_array(A);

parallel_change_array(A,N);

return 0;

}

20

An Example using parallel_for (3 of 4)

 Use the parallel_for algorithm

void change_array(float array, int M) {

for (int i=0; i<M; i++) {

array[i] *= 2;

}

}

class ChangeArrayBody {

float *array;

public:

ChangeArrayBody (float *a): array(a) {}

void operator() (const blocked_range <int>& r) const {

for (int i=r.begin(); i != r.end(); i++) {

array[i] *= 2;

}

}

};

void parallel_change_array(float *array, int M) {

parallel_for (blocked_range <int>(0,M),

ChangeArrayBody(array), auto_partitioner()) ;

}

21

An Example using parallel_for (4 of 4)

 Use the parallel_for algorithm

22

Parallel algorithm usage example

23

Outline

 Intel Threading Building Blocks

 Task-based programming

 Task Scheduler

 Scalable Memory Allocators

 Concurrent Containers

 Synchronization Primitives

24

Task Scheduler

 Task scheduler is the engine driving Intel® Threading Building

Blocks

 Manages thread pool, hiding complexity of native thread

management

 Maps logical tasks to threads

 Parallel algorithms are based on task scheduler interface

 Task scheduler is designed to address common performance

issues of parallel programming with native threads

25

Two Execution Orders

26

Work Depth First; Steal Breadth First

27

Another example: Quicksort – Step 1

28

Quicksort – Step 2

29

Quicksort – Step 2

30

Quicksort – Step 3

31

Quicksort – Step 3

32

Quicksort – Step 4

33

Quicksort – Step 5

34

Quicksort – Step 6

35

Quicksort – Step 6

36

Quicksort – Step 7

37

The parallel_reduce Template

38

Numerical Integration Example (1 of 3)

39

parallel_reduce Example (2 of 3)

40

parallel_reduce Example (3 of 3)

41

Task cancellation

avoids unneeded work

42

Task cancellation example

43

Uncaught exceptions cancel

task execution

44

Outline

 Intel Threading Building Blocks

 Task-based programming

 Task Scheduler

 Scalable Memory Allocators

 Concurrent Containers

 Synchronization Primitives

45

Scalable Memory Allocators

 Serial memory allocation can easily become a bottleneck in

multithreaded applications

 Threads require mutual exclusion into shared heap

 False sharing - threads accessing the same cache line

 Even accessing distinct locations, cache line can ping-pong

 Intel® Threading Building Blocks offers two choices for

scalable memory allocation

 Similar to the STL template class std::allocator

 scalable_allocator

• Offers scalability, but not protection from false sharing

• Memory is returned to each thread from a separate pool

 cache_aligned_allocator

• Offers both scalability and false sharing protection

46

Outline

 Intel Threading Building Blocks

 Task-based programming

 Task Scheduler

 Scalable Memory Allocators

 Concurrent Containers

 Synchronization Primitives

47

Concurrent Containers

 TBB Library provides highly concurrent containers

 STL containers are not concurrency-friendly: attempt to modify

them concurrently can corrupt container

 Standard practice is to wrap a lock around STL containers

• Turns container into serial bottleneck

 Library provides fine-grained locking or lockless

implementations

 Worse single-thread performance, but better scalability

 Can be used with the library, OpenMP, or native threads

48

Concurrent Containers Key Features

49

Outline

 Intel Threading Building Blocks

 Task-based programming

 Task Scheduler

 Scalable Memory Allocators

 Concurrent Containers

 Synchronization Primitives

50

Synchronization Primitives

 Parallel tasks must sometimes touch shared data

 When data updates might overlap, use mutual exclusion to

avoid race

 High-level generic abstraction for HW atomic operations

 Atomically protect update of single variable

 Critical regions of code are protected by scoped locks

 The range of the lock is determined by its lifetime (scope)

 Leaving lock scope calls the destructor, making it exception

safe

 Minimizing lock lifetime avoids possible contention

 Several mutex behaviors are available

51

Atomic Execution

 atomic <T>

 T should be integral type or pointer type

 Full type-safe support for 8, 16, 32, and 64-bit integers

Operations

52

Mutex Flavors

 spin_mutex

 Non-reentrant, unfair, spins in the user space

 VERY FAST in lightly contended situations; use if you need to protect

very few instructions

 queuing_mutex

 Non-reentrant, fair, spins in the user space

 Use Queuing_Mutex when scalability and fairness are important

 queuing_rw_mutex

 Non-reentrant, fair, spins in the user space

 spin_rw_mutex

 Non-reentrant, fair, spins in the user space

 Use ReaderWriterMutex to allow non-blocking read for multiple

threads

53

One last question…

 Do not ask!

 Not even the scheduler knows how many threads really are available

• There may be other processes running on the machine

 Routine may be nested inside other parallel routines

 Focus on dividing your program into tasks of sufficient size

 Task should be big enough to amortize scheduler overhead

 Choose decompositions with good depth-first cache locality and

potential breadth-first parallelism

 Let the scheduler do the mapping

54

References

 The content expressed in this chapter is come from

 berkeley university open course

(http://parlab.eecs.berkeley.edu/2010bootcampagenda,

Shared Memory Programming with TBB, Michael Wrinn)

 http://software.intel.com/en-us/courseware

 IDF2012：Task Parallel Evolution and Revolution – Intel Cilk

Plus and Intel Threading Building Blocks

