SCTS fe

Parallel Programming Principle and Practice

Lecture 7 —

Threads programming with TBB

/\fﬁ”f’g‘g Jin, Hai

=\

School of Computer Science and Technology

Huazhong University of Science and Technology

O O 0O 0O O O

QOutline

Intel Threading Building Blocks
Task-based programming
Task Scheduler

Scalable Memory Allocators
Concurrent Containers

Synchronization Primitives

wnl FraELT

SCS fsser

Ways to Improve Naive Implementation

[0 Programming with OS Threads can get complicated and error-prone, even
for the pattern as simple as for-loop

Works with fixed number of Implement a function which determines

threads

The implementation is not
portable

The solution is not re-
usable

Potentially poor
performance due to work-
load imbalance

The solution is not
composable

the ideal number of worker threads

Implement wrapper functions with code
specific to each supported OS

Abstract the iteration space and re-write
all the loops to comply with it

Implement thread-pool and use
heuristics to balance the work-load
between worker threads

Well...continue adding more code...doing
testing...and tuning...

T Fra#xf 5

Task-basked Programming SCTS (ooes
A Better Approach to Parallelism

[1 Portable task-based technologies
» Intel® Threading Building Blocks (Intel® TBB)

lets you easily write parallel C++ programs that take full
advantage of multicore performance, that are portable
and composable, and that have future-proof scalabllity.

C++ template library: general task-based programming,
concurrent data containers, and more ...

poy FERELT

SCTS @

Key Feature

O

O O

It is a template library intended to ease parallel programming
for C++ developers

» Relies on generic programming to deliver high performance
parallel algorithms with broad applicability

It provides a high-level abstraction for parallelism
It facilitates scalable performance

» Strives for efficient use of cache, and balances load
» Portable across Linux*, Mac OS*, Windows?*, and Solaris*

Can be used in concert with other packages such as native
threads and OpenMP (fighting for thread, tbb, openmp)

Open source and licensed versions available

unT FrauaxT 5

Implement “parallel ideals” witHcTs &=

Templates and Language Features

Algorithms

Data Structures

Dependencies

Memory
Management

Parallel Algorithms

Thread-safe and scalable
Data Structures

- Minimum of dependencies

- Efficient use of
synchronization primitives
or thread local storage

Scalable Memory Manager

Require many code changes when
developed from scratch: often it
takes a threading expert to get it
right

Serial data structures usually require
global locks to make operations
thread-safe

Too many dependencies = expensive
synchronization = poor parallel
performance

Standard memory allocator is often
inefficient in multi-threaded app

wnT FrHELT 6

Task-based Programming SCTS - (ooe
Advantages

Forward-scaling Takes a threading expert to

Portability
Flexibility
Performance

Composability

implement a scalable solution

Non-portable, requires extra
coding, maintenance, and testing

Requires extra effort to implement
reusable solution

Requires a threading expert and
special knowledge to get it right

Cross-component coordination is
required (added coding, testing,
and tuning)

An efficient solution using OS

threads requires expertise and

Allow thinking at higher level and
produce implementations
independent of number of CPUs

Portable across many platforms
Broadly applicable by design

Designed for high performance

Support nested parallelism and can
be used together

Task-based solution often can
speed up your app with a

leads to a significant re-design

minimal code changes

wnl FraELF

Implementing Common Parallelscts /e
Performance Patterns

Parallel Algorithms

Thread-safe and Scalable
Data Structures

Dependencies

Thread-Local Storage

Synchronization Primitives

Scalable Memory Manager

Intel® Cilk™ Plus and Intel® Threading Bulling
Blocks (Intel® TBB) parallel loops, parallel
functions, parallel recursion, parallel pipeline

Intel TBB concurrent containers

Intel TBB flow graph
Intel Cilk Plus reducers
Intel TBB thread-local storage

Intel TBB exception-safe locks, condition
variables, and atomics

Intel TBB scalable memory allocator and false-
sharing free allocator

wny FraELF 3

-

Intel® TBB online

:

www.threadingbuildingblocks.org J\

\

Downloads, active users
forum, developers’ blogs,

documentation

|

News and
announcements

}

-

regresents

wmchanisrm for soal

~

s Worary th

2 hgher-leved, task->

abiity and pecfurmance

SETER 2.0 = avaliadie
on and purdh
y Wilinarth's and Jamas Rewders

¢ Raad he annmencament
e Neoad abows the
blog: IBG 3

hitory of
few (tods

\\
8 1 rep [iween Sraasncbuidocbiocs oy “

tor Comnd

oxcing

at the Jotel Prass Beson

TR0 and He hanges availlable

23d Now
asa today as well

tal SofMws

CGCL

fofums

pressing parallelison o a
sace withoot

May 4, 2010 Intel® Throsding Bulldmg Blocks 3.0 Avaddabie Today: The rew comn
RESD. Z0MICE xRL100
10 it 15 avedable for evall
Yooy

If you need the Sam
ou can learn more s

» Notwark

1t the release n

TBD 2.0 James Randers

Intel® Thesacng

P of [nte! Threading Sulding b
® Read the summary of ew features o Terry Wimarth's Diog: What's New
Buidna Dlocks 3.0
o Hesd about haw 1o mows from TBH to TBS).(

H Robisen's blog: Transitionseg to THES 3.0

Buslding Blocks

Intel® nllt {
Videos |

Docsmentation

Page & Feed options
- 0,90
Bookmark This

gy this o deliciomn

Mesouree

Caode Samples
1
e but
" ' e
ity alle
Buy Nes

P e 4

Open Source
License information

s

{Code samples, FAQ

T Frauxt

SCTS @
limitation

[1 TBB is not intended for
» 1/O bound processing

» Real-time processing

[1 General limitations
» Direct use only from C++
» Distributed memory not supported (target is desktop)

» Requires more work than sprinkling in pragmas, for example OpenMP

unl Fr#ELT o

O O 0O 0O O O

QOutline

Intel Threading Building Blocks
Task-based programming
Task Scheduler

Scalable Memory Allocators
Concurrent Containers

Synchronization Primitives

”,,? Fr#HHuLY o

SCTS (ooes
Task-based programming

[1 Tasks are light-weight entities at user-level

> TBB parallel algorithms map tasks onto threads automatically

» Task scheduler manages the thread pool

« Scheduler is unfair to favor tasks that have been most recent In
the cache

[1 Oversubscription and undersubscription of core resources is
prevented by task-stealing techniqgue of TBB scheduler

sy FEREET L

SCTS (ooes
Generic Parallel Algorithms

Loop parallelization

[1 parallel for and parallel reduce Load balanced parallel
execution of fixed number of independent loop iterations

[l parallel scan Template function that computes parallel
prefix (y[i] = y[i-1] op x[i])

Parallel Algorithms for Streams

[l parallel_ do Use for unstructured stream or pile of work;
Can add additional work to pile while running

[l parallel for _each parallel do without an additional work
feeder

wnl FrAELT 3

SCTS (ooes
Generic Parallel Algorithms

Parallel Algorithms for Streams
[1 pipeline / parallel_pipeline
» Linear pipeline of stages - you specify maximum number of items that can be
in flight
» Each stage can be parallel or serial in-order or serial out-of-order. Stage
(filter) can also be thread-bound

» Uses cache efficiently: Each worker thread flies an item through as many
stages as possible; Biases towards finishing old items before tackling new
ones

Others

[0 parallel invoke Parallel execution of a number of user-specified
functions

[0 parallel sort Comparison sort with an average time complexity O(N
Log(N)); When worker threads are available parallel_sort creates
subtasks that may be executed concurrently

wnl FraELF

The parallel for Template

template <typename Range, typename Body>
void parallel_for(const Range& range, const Body &body);

Requires definition of

» A range type to iterate over
« Must define a copy constructor and a destructor
« Definesis_empty ()
« Defines is_divisible ()
« Defines a splitting constructor, R(R &r, split)

» A body type that operates on the range (or a subrange)

« Must define a copy constructor and a destructor

- Defines operator() ol FrHHELE
i v 15

Body is Generic

SCTS fe_

[Requirements for parallel for Body

Body::Body(const Body&)
Body::~Body()

void Body::operator() (Range& subrange) const

Copy constructor

Destructor

Apply the body to
subrange.

[1 parallel for partitions original range into subranges, and
deals out subranges to worker threads in a way that

» Balances load
» Uses cache efficiently
» Scales

ﬁ#"f'ﬂﬁ%? 16

SCTS - (ooe
Range Is Generic

[J Requirements for parallel for Range

R::R (const R&) Copy constructor

R::~R() Destructor

bool R::is_empty() const True if range is empty

bool R::is_divisible() const True if range can be partitioned

R::R (R& r, split) Splitting constructor; splits r into
two subranges

L1 Library provides predefined ranges
» blocked _range and blocked range2d

[l You can define your own ranges

ﬁ#"f'ﬁ”ﬁk% 17

SCOS -

[CGCL

An Example using parallel for (1 of 4)

[l Independent iterations and fixed/known bounds

[1 Sequential code starting point

const int N = 100000;
void change_array(float array, int M) {
for (int i=0; I<M; i++) {
array[i] *= 2;
}
}

int main() {
float A[N];
initialize_array(A);
change_array(A,N);
return O;

}

ﬁ#"f'ﬂﬁkﬁ 18

SCTS - (ooe
An Example using parallel for (2 of 4)

1 Include and initialize the library

Int main() {
float A[N];
initialize_array(A); #include “tbb/task scheduler_init.h”
change_array(A,N); #include “tbb/blocked_range.h”
}return 0 #include “tbb/parallel_for.h”
using namespace tbb;
| iInt main() {
blue =_nri5|in:1:‘:| l:;u.:’e £ task scheduler_init init;
' ?;:Ti;uﬁ::;m; fuflibrary float A[N];
Initialize_array(A);
parallel_change_array(A,N);
return O;
}

ﬁ#"r?‘”ﬁkﬁ 19

SCTS ﬁ_

An Example using parallel for (3 of 4)

[1 Use the parallel for algorithm green = provided by TBB

blue = original code

void change_array(float array, int M) {
for (int iI=0; I<M; i++) {

arrayli] *= 2;
}
}

red = boilerplate for library

class ChangeArrayBody {
float *array;
public:

ChangeArrayBody (float *a): array(a) {}
void operator() (const blocked range <int>& r) const {
for (int i=r.begin(); i '=r.end(); i++) {
array[i] *= 2;
}
}

I3
void parallel _change array(float *array, int M) {
parallel for (blocked range <int>(0,M),
ChangeArrayBody(array), auto_partitioner()) ;

SCTS (ome

An Example using parallel for (4 of 4)

[0 Use the parallel for algorithm blue = original code

green = provided by TBB
red = boilerplate for library

class ChangeArrayBody ({
float *array;
public:
ChangeArrayBody (float *a): array(a) {}

array[i] *= 2;

}
i

void parallel change array(float *array, int M) {
parallel for (blocked range <int>(0, M),
ChangeArrayBody (array) ,
auto partitioner());

void operator() (const blocked range <int>& r) const{
for (int i = r.begin(); i '= r.end(); i++){

ﬁ#"f’f‘}ﬁk% 21

SCTS &l_

Parallel algorithm usage example

#include "tbb/blocked_range.h"
#include "tbb/parallel_for.h"
using namespace tbb;

-:‘4.c!a§'s ChangeArrgyBod:);{'" S
int* array;

public:
ChangeArrayBody (int* a) array(a) {}...

ChangeArrayBody class defines
a for-loop body for parallel_for

S

blocked_range - TBB template
representing 1D iteration space

v01d operataor(){.const- blocked range<1nt>& r }consf{

““for (int i=r.begin(); il=r.end(); i+ |
.. Foo(array[i]);

}
)

void ChangeArrayParallel (int* a, intn)

}

int main (){
int A[NJ;
/I initialize array here...
ChangeArrayParallel (A, N);
return 0;

v

As usual with C++ function

objects the main work
is done inside operator()

':jpg_l_'gllel_f_g_r,(Blocked_range<int>(0. n), ChangeArrayBody(a));

/’

\

A call to a template function
parallel_for<Range, Body>:
with arguments
Range - blocked_range
Body = ChangeArray

\

/

O O 0O 0O O O

QOutline

SCTS ﬁ

Intel Threading Building Blocks
Task-based programming
Task Scheduler

Scalable Memory Allocators
Concurrent Containers

Synchronization Primitives

pop FEREAT o

SCTS ﬁ
Task Scheduler

[1 Task scheduler is the engine driving Intel® Threading Building
Blocks

» Manages thread pool, hiding complexity of native thread
management

» Maps logical tasks to threads
[1 Parallel algorithms are based on task scheduler interface

[1 Task scheduler is designed to address common performance
Issues of parallel programming with native threads

Oversubscription One scheduler thread per hardware thread
Fair scheduling Non-preemptive unfair scheduling
High overhead Programmer specifies tasks, not threads.

Load imbalance Work-stealing balances load

e, 24

SCTS - (ooe
Two Execution Orders

Depth First Breadth First
(stack) (queue)

Small space

Excellent cache locality

Maximum parallelism

ﬁ#"f'ﬂﬁk? 25

SCTS - (ooe
Work Depth First; Steal Breadth First

Best choice for theft!
*big piece of work
*data far from victim’s hot data.

[Second best choice.]

—

victim thread

T FraELT 56

Another example: Quicksort — Step

32 44 9 26 31 57 3 19 55 2% 27 1 20 5 42 €2 25 51 49 15 54 £ 18 48 10 60 41 14 47 24 36 37 52

ﬁ#"rﬁﬁkff 27

SCTS gL

Quicksort — Step 2

ﬁ#"rf‘}ﬁk% 28

SCTS (ome
Quicksort — Step 2

32 04 9 26 31 57 3 15 55 25 27 1 20 5 42 £2 25 51 49 15 54 6 18 48 10 2 60 41 14 47 24 36 37 52 22 23 3% 11 28 B 13 43 53 23 61 38 56 16 55 17 50 7 21 45 4 39 33 40 58 12 30 0 46 63

¥

52 47 41 43 53 60 61 3
49 51 45 62 39 42 40 5

6 48 59 54 50
5 57 44 46 63

v wnm

Thread 2 gets work by
stealing from Thread 1

ﬁ#"rf‘}ﬁk% 29

SCTS gL

Quicksort — Step 3

v
52 47 41 43 53 60 61 38 56 48 59 54 50
49 51 45 62 39 42 40 58 55 57 44 46 63
|
v v v

45 47 41 43 50 52 51 54 62

46 44 40 38 49 59 56 61 58 55

42 48 39 57 60 53 63

Thread 2 partitions/splits its
data

ﬁ FrHH LT 30

SCLCS _/fcccL

Quicksort — Step 3

ThREAD 1 THREAD

11 0 9 26 31 30 3 19 12 29 27 1 20 5 33 4 25 21 7 52 47 41 43 53 60 61 38 56 48 59 54 50
15 17 6 18 16 10 2 23 13 14 8 24 36 32 28 22 34 35 49 51 45 62 39 42 40 58 55 57 44 46 63
¥ i v
12 29 27 19 20 30 33 31 25 21 11 15 45 47 41 43 50 52 51 54 62
7 17 26 18 16 10 9 23 13 14 B8 24 36 46 44 40 38 49 59 56 61 58 55
32 28 22 34 35 42 48 39 57 60 53 63

Thread 3 gets work by Thread 4 gets work by
stealing from Thread 1 stealing from Thread 2

ﬁ#"rf‘}ﬁk% 31

SCCTS /oo
Quicksort — Step 4

THREAD 3 THREAD 2 THREAD 4

¥ J
47 41 43 53 60 61 38 56 48 59 54 50
l 51 45 62 39 42 40 58 55 57 44 46 63

J) }

12 29 27 19 20 30 33 31 25 21 11 15 45 47 41 43 50 52 51 54 62
17 26 18 16 10 9 23 13 14 B 24 36 46 44 40 38 49 59 56 61 58 55
32 28 22 34 35 42 48 39 57 60 53 63

¥ ¥

11 8 14 13 21 25 26 3133 30
9 10 16 12 20 23 19 27 29 24
17 15 36 32 28 22 34 35

Thread 3 partitions/splits Thread 4 sorts the rest
its data of its data

8 39 40 43 47 43 44 45 46 47 40 45 50 51 52 53 54 55 56 57 50 59 60 ¢ 62 6

SCTS /feoer
Quicksort — Step 5

THREAD 2

et

{
52 47 4333606 38 56 48 59 54 50
49 51 45523942 0 58 55 57 44 46 63
|
¥ ¢ Y

12 29 27 19 20 30 33 31 25 21 11 15 45 47 41 43 50 52 51 54 62
17 26 18 16 10 9 23 13 14 8 24 36 46 44 40 38 49

59 56 61 58 55

32 28 22 34 35

57 60 53 63

11 8 14 13
9 10 16 12
17 15

Thread 3 sorts the
rest of its data

it 39 40 41 42 43 44 45 46

SCTS /feoer
Quicksort — Step 6

6 18 48 10

 THREAD 1 THREAD 3 THREAD 2 THREAD 4

56 48 59 54 50
55 57 44 46 63

v

12 29 27 19 20 30 33 31 25 21 11 15 45 47 41 43 50 52 51 54 62
17 26 18 16 10 9 23 13 14 8 24 36 46 4"(0.-'38. 49 59 56 61 58 55
32 28 22 34 35 42 48 39 57 60 53 63

v

11 8 14 13
9 10 16 12
17 15

! B 39 40 A1 42 43 44 45 46 47 40 49 50 S o2 5 > 59 5 575 50 ¢

Quicksort — Step 6

SCS

_/cGecL

THREAD 4

50 52 51 54 62

59 56 61 58 55

! +
o 52 47 41 43 53 60 61 38 56 48 59 54 50
49 51 45 62 39 42 40 58 55 57 44 46 63
|
) ¢ ! B
12 29 27 19 20 30 33 31 25 21 11 15 45 47 41 43
7 17 26 18 16 10 9 23 13 14 8 24 36 46 44 40 38 49
32 28 22 34 35 42 48 39 57 60 53 63
11 8 14 13
9 10 16 12
& A B
+
30 29 33
36 32 28
31 34 35
Thread 2 gets more work by
stealing from Thread 1

SCLCS _/fcccL

Quicksort — Step 7

THREAD 3

52 47 41 43 53 60 61 38 56 48 59 54 50
49 51 45 62 39 42 40 58 55 57 44 46 63
!
v b ¥
12 29 27 19 20 30 33 31 25 21 11 15 45 47 41 43 50 52 51 54 62
17 26 18 16 10 9 23 13 14 8 24 36 46 44 40 38 49 59 56 61 58 55
32 28 22 34 35 42 48 39 57 60 53 63

11 8 14 13
9 10 16 12
17°X5

SCTS - (ooe
The parallel reduce Template

template <typename Range, typename Body>
void parallel_reduce (const Range& range, Body &body);

<+ Requirements for parallel reduce Body

Body::Body(const Body&, split) Splitting constructor

Body::~Body() Destructor

void Body::operator() (Range& subrange) const Accumulate results from
subrange

void Body::join(Body& rhs); Merge result of rhs into
the result of this.

unT Fraaxt 5

SCTS (ooes
Numerical Integration Example (1 of 3)

static long num steps=100000;
double step, pi;

void main(int argc, char*
argv[])
§ Ant i

double x, sum = 0.0;

step = 1.0/ (double) num steps;
for (i=0; i< num steps; i++) {
x = (1+0.5) *step;
sum += 4.0/(1.0 + x*x);
}
pi = step * sum;
printf (“Pi = %$£f\n”,pi) ;

iy FrH#xT 53

SCTS ﬁ_

parallel reduce Example (2 of 3)

#include "tbb/parallel reduce.h"
f#include "tbb/task scheduler init.h"
#include "tbb/blocked range.h"

using namespace tbb;
int main(int argc, char* argv([])

{
double pi;

double width = 1./ (double)num steps;

MyPi step((double *const) &width) ;
task scheduler init init;

blue = original code
green = provided by TBB
red = boilerplate for library

parallel reduce (blocked range<size t>(0,num steps), step,

pi = step.sum*width;

printf ("The value of PI is %15.12f\n",pi);

return 0;

auto partitioner());

T Fra#x¥ 5o

SCTS - (ooe
parallel reduce Example (3 of 3)

blue = original code
class MyPi green = provided by TBB
double *const my step; red = boilerplate for library
public:
double sum;
void operator() (const blocked range<size t>& r) {
double step = *my step;
double x;
for (size_t i=r.begin(); i'=r.end(); ++i)

{

x = (i + .5)*step; accumulate results
sum += 4.0/ (1.+ x*x);

}
}

MyPi(MyPi& x, split) : my step(x.my step), sum(0) {}
void join(const MyPi& y) {sum += y.sum;} join
MyPi (double *const step) : my step(step), sum(0) ({}

}:
ﬁ#"rf‘}ﬁkﬁ 40

Task cancellation
avolds unneeded work

SCTS &l_

There is a whole class of application that can benefit
from ability to cancel work early

Search
Root
Search Search
Search Search Search Search
Left Right Left Right

ﬁ#‘rﬁﬁk% 41

SCTS - (ooe
Task cancellation example

const int problemSize = N;
/When the value is found the tasb
int main() { cancels itself and all the other
vector<int> intVGC(pr()b'emSiZE); tasks in the same “group”
const int valToFind = K; (by default these are all of the
int valldx = -1;

\tasks of the same algorithm) >,

parallel_for(blocked_range<int>(0, problemSize), = g |
[&](const blocked_range<int>& r) {
for(int.i.=-rbegin(); i< rend(); ++i){-
“if (intVec[i] == valToFind) { :
tbb::task::self().cancel_group_ executlon(),

return O;

SO FrABAT 4

Uncaught exceptions cancel SCTS e
task execution

=

. ' An exception thrown from inside
int main() { the task does not need to be
try { caught in the same task. It will
parallel_for(blocked_range<int>(0, N), cancel task group execution and
[&](const blocked_range<int>&r) { can be caught from outside the
algorithm
for(mtl = r.begin(); i = rend() ++|) { Kg /
_if (datali].==-bad-vatue)- —— Y
throw std::logic_ error(Bad value m Ilst"),
})

e 3 ¢atch (tbb captured exceptlon& e).{
cout << e.name() << " with descnptlon " << e.what() << endl;

: e e

A tbb::captured_task can be
return 0; R
} handled in the catch block

g FrH#LT 43

O O 0O 0O O O

QOutline

Intel Threading Building Blocks
Task-based programming
Task Scheduler

Scalable Memory Allocators
Concurrent Containers

Synchronization Primitives

unT Fra#ExE 44

SCTS @

Scalable Memory Allocators

O

Serial memory allocation can easily become a bottleneck in
multithreaded applications
» Threads require mutual exclusion into shared heap

False sharing - threads accessing the same cache line
» Even accessing distinct locations, cache line can ping-pong

Intel® Threading Building Blocks offers two choices for
scalable memory allocation

» Similar to the STL template class std::allocator

» scalable allocator
« Offers scalability, but not protection from false sharing
« Memory is returned to each thread from a separate pool

» cache_aligned_allocator
« Offers both scalability and false sharing protection

unl FrHELT 45

O O 0O 0O O O

QOutline

Intel Threading Building Blocks
Task-based programming
Task Scheduler

Scalable Memory Allocators
Concurrent Containers

Synchronization Primitives

wnp FEREXT 46

SCTS fs
Concurrent Containers

[l TBB Library provides highly concurrent containers

» STL containers are not concurrency-friendly: attempt to modify
them concurrently can corrupt container

» Standard practice is to wrap a lock around STL containers

 Turns container into serial bottleneck

[1 Library provides fine-grained locking or lockless
Implementations

» Worse single-thread performance, but better scalability

» Can be used with the library, OpenMP, or native threads

lmﬁ Frau1T 4

SCTS -/eser
Concurrent Containers Key Features

concurrent_hash_map <Key, I,Hasher,Allocator>

* Models hash table of std::pair <const Key, T> elements

» Maps Key to element of type T

» User defines Hasher to specify how keys are hashed and compared
» Defaults: Allocator=tbb::tbb_allocator

concurrent_unordered _map<Key, I,Hasher,Equality,Allocator>

» Permits concurrent traversal and insertion (no concurrent erasure)

* Requires no visible locking, looks similar to STL interfaces

» Defaults: Hasher=tbb::tbb hash, Equality=std::equal_to, Allocator=tbb::tbb_allocator

concurrent_vector <T, Allocator>
» Dynamically growable array of T: grow_by and grow_to_atleast
» cache_aligned_allocator is a default allocator

concurrent_queue <T, Allocator>

» For single threaded run concurrent_queue supports regular “first-in-first-out” ordering

» If one thread pushes two values and the other thread pops those two values they will come
out in the order as they were pushed

« cache_aligned_allocator is a default allocator

concurrent_bounded queue <T, Allocator>

» Similar to concurrent_queue with a difference that it allows specifying capacity. Once the
capacity is reached ‘push’ will wait until other elements will be popped before’it can continue.

O O 0O 0O O O

QOutline

Intel Threading Building Blocks
Task-based programming
Task Scheduler

Scalable Memory Allocators
Concurrent Containers

Synchronization Primitives

T FraELF 49

SCTS (ooes
Synchronization Primitives

[1 Parallel tasks must sometimes touch shared data
» When data updates might overlap, use mutual exclusion to
avoid race
[1 High-level generic abstraction for HW atomic operations

» Atomically protect update of single variable

L1 Critical regions of code are protected by scoped locks
» The range of the lock is determined by its lifetime (scope)

» Leaving lock scope calls the destructor, making it exception
safe

» Minimizing lock lifetime avoids possible contention

» Several mutex behaviors are available
T Fr#ELF 5o

SCTS - (ooe
Atomic Execution

1 atomic <T>
» T should be integral type or pointer type
» Full type-safe support for 8, 16, 32, and 64-bit integers

Operations

'=x"and'x =’ read/write value of x
x.fetch_and_store (y) Z=X,X=Y,return z
x.fetch_and_add (y) Z=X,X+=y, return z
x.compare_and_swap (vy,p) z = X, if (x==p) x=y; return z

atomic <int> i;

int z = i.fetch and add(2);

ﬁ#"rf‘”ﬁk% 51

SCTS fs
Mutex Flavors

[1 spin_mutex
» Non-reentrant, unfair, spins in the user space

» VERY FAST in lightly contended situations; use if you need to protect
very few instructions

[1 queuing_mutex
» Non-reentrant, fair, spins in the user space
» Use Queuing_Mutex when scalability and fairness are important

1 queuing_rw_mutex

» Non-reentrant, fair, spins in the user space
] spin_rw_mutex

» Non-reentrant, fair, spins in the user space

» Use ReaderWriterMutex to allow non-blocking read for multiple
threads

unp FrAELT o

SCTS (ooes
One last question...

How do | know how many threads are available?

[0 Do not ask!

» Not even the scheduler knows how many threads really are available

« There may be other processes running on the machine

» Routine may be nested inside other parallel routines

[1 Focus on dividing your program into tasks of sufficient size
» Task should be big enough to amortize scheduler overhead

» Choose decompositions with good depth-first cache locality and
potential breadth-first parallelism

[l Let the scheduler do the mapping
wnl Fr#ELT 5

SCTS fs
References

[1 The content expressed in this chapter is come from

» berkeley university open course
(http://parlab.eecs.berkeley.edu/2010bootcampagenda,
Shared Memory Programming with TBB, Michael Wrinn)

» http://software.intel.com/en-us/courseware

» |IDF2012: Task Parallel Evolution and Revolution — Intel Cilk
Plus and Intel Threading Building Blocks

mnl FraELT o

