
Parallel Programming:

Principle and Practice

Jin, Hai

School of Computer Science and Technology

Huazhong University of Science and Technology

INTRODUCTION

33

Course Goals
• The students will get the skills to use some of the

best existing parallel programming tools, and be
exposed to a number of open research questions

• This course will
 provide an introduction to parallel computing

including parallel computer architectures, analytical
modeling of parallel programs, the principles of
parallel algorithm design

 include material on TBB, OpenMP, CUDA, OpenCL,
MPI, MapReduce

 Course resources
 http://grid.hust.edu.cn/courses/parallel/

4

Syllabus
 Part 1: Principles

 Lec-1 Why Parallel Programming?
 Lec-2 Parallel Architecture
 Lec-3 Parallel Programming Models
 Lec-4 Parallel Programming Methodology
 Lec-5 Parallel Programming: Performance

 Part 2: Typical issues solved by parallel
 Lec-6 Shared Memory Programming and OpenMP*: A High Level Introduction
 Lec-7 Case Studies: Threads programming with TBB
 Lec-8 Programming Using the Message Passing Paradigm
 Lec-9 Introduction to GPGPUs and CUDA Programming Model
 Lec-10 Parallel Computing with MapReduce

 Part 3: Parallel Programming Case Study and Assignments
 Lec-11 Case Study
 Assignment

5

Assignments
 Finish three experiments

 Solve Akari using backtracking

 Solve Akari using parallelizing backtracking

 Solve Akari using improved parallelizing backtracking

 Grading
 The final exam covers 50% while the assignments accounts for 50%

Parallel Programming Principle and Practice

Lecture 1 — Why Parallel Programming?

Jin, Hai

School of Computer Science and Technology

Huazhong University of Science and Technology

7

Outline
 Application demands

 Architectural trends

 What is parallel programming

 Why do we need parallel programming

 Distributed computing

8

APPLICATION DEMANDS
Why parallel programming

9

Application Trends
There is a positive feedback cycle between delivered

performance and applications’ demand for performance

Example application domains:
 Scientific computing : CFD, Biology, Chemistry, Physics, ...

 General-purpose computing : Video, Graphics, CAD, Databases, …

How about applications’ demand for
performance nowadays?

1010

Surge In Devices/Users/Contents

Today 2015

Source：IDF2012

1111

Big Data Phenomenon
• “Data are becoming the new raw material of business: an

economic input almost on a par with capital and labor”
—The Economist, 2010

• “Information will be the ‘oil of the 21st century”
—Gartner，2010

Source：IDF2012

1212

2015 Cloud Vision
• Coexistence of Opportunities and Challenges

Source：IDF2012

1313

Trends to Exascale Performance
• Roughly 10x performance every 4 years, predicts that

we’ll hit Exascale performance in 2018-19

Source：IDF2012

14

ARCHITECTURAL TRENDS
Why parallel programming

15

Architectural Trends
 Architecture translates technology’s gifts to performance and

capability

 Four generations of architectural history: tube, transistor, IC,
VLSI
 Here focus only on VLSI generation

 Greatest delineation in VLSI has been in type of parallelism
exploited

16

Arch. Trends: Exploiting Parallelism
Greatest trend in VLSI generation increases in parallelism
 Up to 1985: bit level parallelism: 4-bit -> 8 bit -> 16-bit

 slows after 32 bit

 adoption of 64-bit now under way, 128-bit far (not performance issue)

 great inflection point when 32-bit micro and cache fit on a chip

 Mid 80s to mid 90s: instruction level parallelism
 pipelining and simple instruction sets, + compiler advances (RISC)

 on-chip caches and functional units => superscalar execution

 greater sophistication: out of order execution, speculation, prediction
• to deal with control transfer and latency problems

 Now: thread level parallelism

17

Phases in VLSI Generation

Three phases:

•Bit-level

•Instruction-level

•Thread-level

18

VLSI Technology Trends
 Intel announced that they have reach 1.7 billion with Itanium

processor
 Gigascale Integration (GSI) = 1 billion transistors per chip

http://users.ece.gatech.edu/~jeff/ece4420/technology.pdf

19

The Rate of Single-Thread
Performance Improvement has Decreased

 VAX: 25%/year 1978 to 1986
 RISC + x86: 52%/year 1986 to 2002
 RISC + x86: ??%/year 2002 to present

20

Impact of Power Density
on the Microprocessor Industry

The development tendency is not higher clock rates, but
multiple cores per die

21

Recent Intel Processors

 “We are dedicating all of our future product
development to multicore designs. We believe
this is a key inflection point for the industry.” Intel
President Paul Otellini, IDF 2005

Processors Year Fabrication(nm) Clock(GHz) Power(W)
Pentium 4 2000 180 1.80-4.00 35-115
Pentium M 2003 90/130 1.00-2.26 5-27
Core 2 Duo 2006 65 2.60-2.90 10-65
Core 2 Quad 2006 65 2.60-2.90 45-105
Core i7(Quad) 2008 45 2.93-3.60 95-130
Core i5(Quad) 2009 45 3.20-3.60 73-95
Pentium Dual-Core 2010 45 2.80-3.33 65-130
Core i3(Duo) 2010 32 2.93-3.33 18-73
2nd Gen i3(Duo) 2011 32 2.50-3.40 35-65
2nd Gen i5(Quad) 2011 32 3.10-3.80 45-95
2nd Gen i7(Quad/Hexa) 2011 32 3.80-3.90 65-130
3rd Gen i3(Duo) 2012 22/32 2.80-3.40 35-55
3rd Gen i5(Quad) 2012 22/32 3.20-3.80 35-77
3rd Gen i7(Quad/Hexa) 2012 22/32 3.70-3.90 45-77
Xeon E5(8-cores) 2013 22 1.80-2.90 60-130
Xeon Phi(60-cores) 2013 22 1.10 300

2222

Intel's Many Core and Multi-core
• Intel 80-core TeraScale Processor (Vangal et al. 2008)

 developed a solver (single precision) for this chip that ran at 1
TFLOP with only 97 Watts

Source： Tim Mattson, Intel Labs

2323

Trends are putting all onto one chip
• The future belongs to heterogeneous, many core

SOC as the standard building block of computing
• SOC = system on a chip

Source： Tim Mattson, Intel Labs

2424

Intel 72-core x86 Knights Landing
CPU for exascale supercomputing

2525

Large-Scale Computing Systems

Large-Scale Computing Systems

Franklin (NERSC-5): Cray XT4
• 9,532 compute nodes; 38,128 cores
• Each node has an AMD quad core

processor
and 8 GB of memory

• ~25 Tflop/s on applications; 352 Tflop/s
peak

HPSS Archival Storage
• 40 PB capacity
• 4 Tape libraries

NERSC Global
Filesystem (NGF)

Uses IBM’s GPFS
1.5 PB; 5.5 GB/s

Clusters
105 Tflops total

Carver
• IBM iDataplex cluster

PDSF (HEP/NP)
• Linux cluster (~1K cores)
Magellan Cloud testbed
• IBM iDataplex cluster

Analytics

Euclid (512 GB
shared memory)

Dirac GPU testbed
(48 nodes)

Hopper (NERSC-6): Cray XE6
• Phase 1: Cray XT5, 668 nodes, 5344 cores
• Phase 2: > 1 Pflop/s peak (2 sockets/node,

12 cores/socket)

Tianhe-I(A)
• 6,144 compute nodes; 24576 cores
• 2560 AMD Radeon HD 4870*2 GPU
• 98TB memory in total
• Rpeak: 4.700 pflops; Rmax: 2.566

pflops

Jaguar:(Cray XT5)
• 224,256 x86-based AMD Opteron

processor cores
• Rpeak:2.331 pflops; Rmax :1.759

pflops

26

Execution is not just about hardware
 The VAX fallacy
 Produce one instruction for

every high-level concept
 Absurdity: polynomial multiply

• Single hardware instruction
• But Why? Is this really faster??

 RISC Philosophy
 Full System Design
 Hardware mechanisms viewed

in context of complete system
 Cross-boundary optimization

 Modern programmer does
not see assembly language
 Many do not even see “low-

level” languages like “C”

27

WHAT IS PARALLEL
PROGRAMMING?

Why parallel programming

28

What is Parallel Computing?
 Traditionally, software has been written for serial

computation
 To be run on a single computer having a single CPU
 A problem is broken into a discrete series of

instructions
 Instructions are executed one after another
 Only one instruction may execute at any moment in

time

29

For example

30

Parallel Computing
 In the simplest sense, parallel computing is the

simultaneous use of multiple compute resources to
solve a computational problem
 To be run using multiple CPUs
 A problem is broken into discrete parts that can be solved

concurrently
 Each part is further broken down to a series of instructions
 Instructions from each part execute simultaneously on

different CPUs

31

Example

32

Example
 The compute resources might be

 A single computer with multiple processors

 An arbitrary number of computers connected by a network

 A combination of both

 The computational problem should be able to
 Be broken apart into discrete pieces of work that can be solved

simultaneously

 Execute multiple program instructions at any moment in time

 Be solved in less time with multiple compute resources than with a
single compute resource

33

Speedup
Goal of applications in using parallel machines: Speedup

For a fixed problem size (input data set), performance = 1/time

34

Learning Curve for Parallel Programs

 AMBER molecular dynamics simulation program
 Starting point was vector code for Cray-1
 145 MFLOP on Cray90, 406 for final version on 128-

processor Paragon, 891 on 128-processor Cray T3D

35

Commercial Computing
 Databases, online-transaction processing, decision support,

data mining, data warehousing ...

 Also relies on parallelism for high end
 Scale not so large, but use much more wide-spread

 Computational power determines scale of business that can be handled

 TPC benchmarks (TPC-C order entry, TPC-D decision
support)
 Explicit scaling criteria provided

 Size of enterprise scales with size of system

 Problem size no longer fixed as p increases, so throughput is used as a
performance measure (transactions per minute or tpm)

36

WHY DO WE NEED PARALLEL
PROGRAMMING?

Why parallel programming

3737

Now we can get: single-source
approach to multi- and many-core

Source：IDF2012

3838

However, the
Parallelizing Compilers

• After 30 years of intensive research
 only limited success in parallelism detection and

program transformations
• instruction-level parallelism at the basic-block level can be detected

• parallelism in nested for-loops containing arrays with simple index
expressions can be analyzed

• analysis techniques, such as data dependence analysis, pointer analysis, flow
sensitive analysis, abstract interpretation, ... when applied across procedure
boundaries often take far too long and tend to be fragile, i.e., can break
down after small changes in the program

 instead of training compilers to recognize parallelism,
people have been trained to write programs
that parallelize

3939

A simple example
• Loop is a simple example of a code region that can

benefit from parallelism

• Let’s look at one of the possible implementations of
parallel for-loop

4040

Things to Consider in Creating a
Parallelized “for-loop”

• Step 1

4141

Things to Consider in Creating a
Parallelized “for-loop”

• Step 2

4242

Many Ways to Improve Naïve
Implementation

4343

Parallel Programming Complexity
• Enough parallelism? (Amdahl’s Law)

• Granularity

• Locality

• Load balance

• Coordination and Synchronization

• All of these things makes parallel
programming even harder than sequential
programming

4444

Parallel Compared to Sequential
Programming

• Has different costs, different advantages

• Requires different, unfamiliar algorithms

• Must use different abstractions

• More complex to understand a program’s behavior

• More difficult to control the interactions of the
program’s components

• Knowledge/tools/understanding more primitive

4545

Is it really harder to “think” in parallel?
 Some would argue it is more natural to think

in parallel…
 … and many examples exist in daily life
 House construction -- parallel tasks, wiring and

plumbing performed at once (independence), but
framing must precede wiring (dependence)
 Similarly, developing large software systems

 Assembly line manufacture - pipelining, many
instances in process at once

 Call center - independent calls executed
simultaneously (data parallel)

 “Multi-tasking” – all sorts of variations

46

DISTRIBUTED COMPUTING
Why parallel programming

47

Parallel vs Distributed Computing
 Parallel computing splits a single application up into tasks

that are executed at the same time and is more like a top-
down approach

 Parallel computing is about decomposition
 how we can perform a single application concurrently

 how we can divide a computation into smaller parts which may
potentially be executed in parallel

 Parallel computing consider how to reach a maximum degree
of concurrency
 Scientific computing

48

Parallel vs Distributed Computing
 Distributed computing considers a single application which

is executed as a whole but at different locations and is more
like a bottom-up approach

 Distributed computing is about composition
 What happens if many distributed processes interact with each other

 If a global function can be achieved although there is no global time or
state

 Distributed computing considers reliability and availability
 Information/resource sharing

49

Parallel vs Distributed Computing
 The differences are now blurred, especially after the

introduction of grid computing and cloud computing

 The two related fields have many things in common
 Multiple processors

 Networks connecting the processors

 Multiple computing activities and processes

 Input/output data distributed among processors

50

The Network is the Computer

“when the network is as fast as the computer’s internal links, the
machine disintegrates across the net into a set of special
purpose appliances”

51

Grid Computing
 Grid computing is the combination of computer resources

from multiple administrative domains applied to a common
task, usually to a scientific, technical or business problem that
requires a great number of computer processing cycles or the
need to process large amounts of data

 It is a form of distributed computing whereby a “super and
virtual computer” is composed of a cluster of networked
loosely coupled computers acting in concert to perform very
large tasks

 This technology has been applied to computationally intensive
scientific, mathematical, and academic problems, and used in
commercial enterprise data intensive applications

52

Cloud Computing
 A style of computing where massively scalable IT-related

capabilities are provided “as a service” using Internet
technologies to multiple external customers

 Cloud computing describes a new supplement, consumption
and delivery model for IT services based on the Internet, and
it typically involves the provision of dynamically scalable and
often virtualized resources (storage, platform,
infrastructure, and software) as a service over the Internet

5353

Conclusion

53

 Certainly, it is no longer sufficient for even basic
programmers to acquire only the traditional,
conventional sequential programming skills

 Need for imparting a broad-based skill set in PDC
technology at various levels in the educational
fabric woven by Computer Science (CS) and
Computer Engineering (CE) programs as well as
related computational disciplines

54

References
 The content expressed in this chapter comes from
 UC Berkeley open course

(http://parlab.eecs.berkeley.edu/2010bootcampagenda)

 Carnegie Mellon University’s public course, Parallel Computer
Architecture and Programming (CS 418)
(http://www.cs.cmu.edu/afs/cs/academic/class/15418-
s11/public/lectures/)

 Livermore Computing Center’s training materials, Introduction to
Parallel Computing
(https://computing.llnl.gov/tutorials/parallel_comp/)

	Parallel Programming:�Principle and Practice
	INTRODUCTION
	Course Goals
	Syllabus
	Assignments
	Parallel Programming Principle and Practice�Lecture 1 — Why Parallel Programming?
	Outline
	APPLICATION DEMANDS
	Application Trends
	Surge In Devices/Users/Contents
	Big Data Phenomenon
	2015 Cloud Vision
	Trends to Exascale Performance
	ARCHITECTURAL TRENDS
	Architectural Trends
	Arch. Trends: Exploiting Parallelism
	Phases in VLSI Generation
	VLSI Technology Trends
	The Rate of Single-Thread �Performance Improvement has Decreased
	Impact of Power Density �on the Microprocessor Industry
	Recent Intel Processors
	Intel's Many Core and Multi-core
	Trends are putting all onto one chip
	Intel 72-core x86 Knights Landing �CPU for exascale supercomputing
	Large-Scale Computing Systems
	Execution is not just about hardware
	WHAT IS PARALLEL PROGRAMMING?
	What is Parallel Computing?
	For example
	Parallel Computing
	Example
	Example
	Speedup
	Learning Curve for Parallel Programs
	Commercial Computing
	WHY DO WE NEED PARALLEL PROGRAMMING?
	Now we can get: single-source approach to multi- and many-core
	However, the �Parallelizing Compilers
	A simple example
	Things to Consider in Creating a Parallelized “for-loop”
	Things to Consider in Creating a Parallelized “for-loop”
	Many Ways to Improve Naïve Implementation
	Parallel Programming Complexity
	Parallel Compared to Sequential Programming
	Is it really harder to “think” in parallel?
	DISTRIBUTED COMPUTING
	Parallel vs Distributed Computing
	Parallel vs Distributed Computing
	Parallel vs Distributed Computing
	The Network is the Computer
	Grid Computing
	Cloud Computing
	Conclusion
	References

