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Course Goals
• The students will get the skills to use some of the 

best existing parallel programming tools, and be 
exposed to a number of open research questions

• This course will
 provide an introduction to parallel computing 

including parallel computer architectures, analytical 
modeling of parallel programs, the principles of 
parallel algorithm design

 include material on TBB, OpenMP, CUDA, OpenCL, 
MPI, MapReduce

 Course resources
 http://grid.hust.edu.cn/courses/parallel/
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Syllabus
 Part 1: Principles

 Lec-1 Why Parallel Programming?
 Lec-2 Parallel Architecture
 Lec-3 Parallel Programming Models
 Lec-4 Parallel Programming Methodology
 Lec-5 Parallel Programming: Performance

 Part 2: Typical issues solved by parallel
 Lec-6 Shared Memory Programming and OpenMP*: A High Level Introduction 
 Lec-7 Case Studies: Threads programming with TBB
 Lec-8 Programming Using the Message Passing Paradigm
 Lec-9 Introduction to GPGPUs and CUDA Programming Model
 Lec-10 Parallel Computing with MapReduce

 Part 3: Parallel Programming Case Study and Assignments
 Lec-11 Case Study
 Assignment
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Assignments
 Finish three experiments

 Solve Akari using backtracking

 Solve Akari using parallelizing backtracking

 Solve Akari using improved parallelizing backtracking

 Grading
 The final exam covers 50% while the assignments accounts for 50%
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Outline
 Application demands

 Architectural trends

 What is parallel programming

 Why do we need parallel programming

 Distributed computing
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APPLICATION DEMANDS
Why parallel programming
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Application Trends
There is a positive feedback cycle between delivered 

performance and applications’ demand for performance

Example application domains:
 Scientific computing : CFD, Biology, Chemistry, Physics, ...

 General-purpose computing : Video, Graphics, CAD, Databases, …

How about applications’ demand for 
performance nowadays?
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Surge In Devices/Users/Contents

Today 2015

Source：IDF2012
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Big Data Phenomenon
• “Data are becoming the new raw material of business: an 

economic input almost on a par with capital and labor”
—The Economist, 2010

• “Information will be the ‘oil of the 21st century”
—Gartner，2010

Source：IDF2012
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2015 Cloud Vision
• Coexistence of Opportunities and Challenges 

Source：IDF2012
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Trends to Exascale Performance
• Roughly 10x performance every 4 years, predicts that 

we’ll hit Exascale performance in 2018-19

Source：IDF2012
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ARCHITECTURAL TRENDS
Why parallel programming
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Architectural Trends
 Architecture translates technology’s gifts to performance and 

capability

 Four generations of architectural history:  tube, transistor, IC,  
VLSI
 Here focus only on VLSI generation

 Greatest delineation in VLSI has been in type of parallelism 
exploited
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Arch. Trends: Exploiting Parallelism
Greatest trend in VLSI generation increases in parallelism
 Up to 1985:  bit level parallelism:  4-bit -> 8 bit -> 16-bit

 slows after 32 bit 

 adoption of 64-bit now under way, 128-bit far (not performance issue)

 great inflection point when 32-bit micro and cache fit on a chip

 Mid 80s to mid 90s:  instruction level parallelism
 pipelining and simple instruction sets, + compiler advances (RISC)

 on-chip caches and functional units => superscalar execution

 greater sophistication: out of order execution, speculation, prediction
• to deal with control transfer and latency problems

 Now:  thread level parallelism
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Phases in VLSI Generation

Three phases:

•Bit-level 

•Instruction-level 

•Thread-level
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VLSI Technology Trends
 Intel announced that they have reach 1.7 billion with Itanium 

processor
 Gigascale Integration (GSI) = 1 billion transistors per chip

http://users.ece.gatech.edu/~jeff/ece4420/technology.pdf
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The Rate of Single-Thread 
Performance Improvement has Decreased

 VAX: 25%/year 1978 to 1986 
 RISC + x86: 52%/year 1986 to 2002 
 RISC + x86: ??%/year 2002 to present
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Impact of Power Density 
on the Microprocessor Industry

The development tendency is not higher clock rates, but 
multiple cores per die
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Recent Intel Processors

 “We are dedicating all of our future product 
development to multicore designs.  We believe 
this is a key inflection point for the industry.” Intel 
President Paul Otellini, IDF 2005

Processors Year Fabrication(nm) Clock(GHz) Power(W)
Pentium 4 2000 180 1.80-4.00 35-115
Pentium M 2003 90/130 1.00-2.26 5-27
Core 2 Duo 2006 65 2.60-2.90 10-65
Core 2 Quad 2006 65 2.60-2.90 45-105
Core i7(Quad) 2008 45 2.93-3.60 95-130
Core i5(Quad) 2009 45 3.20-3.60 73-95
Pentium Dual-Core 2010 45 2.80-3.33 65-130
Core i3(Duo) 2010 32 2.93-3.33 18-73
2nd Gen i3(Duo) 2011 32 2.50-3.40 35-65
2nd Gen i5(Quad) 2011 32 3.10-3.80 45-95
2nd Gen i7(Quad/Hexa) 2011 32 3.80-3.90 65-130
3rd Gen i3(Duo) 2012 22/32 2.80-3.40 35-55
3rd Gen i5(Quad) 2012 22/32 3.20-3.80 35-77
3rd Gen i7(Quad/Hexa) 2012 22/32 3.70-3.90 45-77
Xeon E5(8-cores) 2013 22 1.80-2.90 60-130
Xeon Phi(60-cores) 2013 22 1.10 300
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Intel's Many Core and Multi-core
• Intel 80-core TeraScale Processor (Vangal et al. 2008)

 developed a solver (single precision) for this chip that ran at 1 
TFLOP with only 97 Watts

Source： Tim Mattson, Intel Labs
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Trends are putting all onto one chip
• The future belongs to heterogeneous, many core 

SOC as the standard building block of computing
• SOC = system on a chip

Source： Tim Mattson, Intel Labs
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Intel 72-core x86 Knights Landing 
CPU for exascale supercomputing
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Large-Scale Computing Systems

Large-Scale Computing Systems

Franklin (NERSC-5): Cray XT4
• 9,532 compute nodes; 38,128 cores
• Each node has an AMD quad core 

processor
and 8 GB of memory

• ~25 Tflop/s on applications; 352 Tflop/s 
peak

HPSS Archival Storage
• 40 PB capacity
• 4 Tape libraries

NERSC Global 
Filesystem (NGF)

Uses IBM’s GPFS
1.5 PB; 5.5 GB/s

Clusters
105 Tflops total 

Carver
• IBM iDataplex cluster

PDSF (HEP/NP)
• Linux cluster (~1K cores)
Magellan Cloud testbed
• IBM iDataplex cluster

Analytics

Euclid (512 GB 
shared memory)

Dirac GPU testbed 
(48 nodes)

Hopper (NERSC-6): Cray XE6 
• Phase 1: Cray XT5, 668 nodes, 5344 cores
• Phase 2: > 1 Pflop/s peak (2 sockets/node, 

12 cores/socket)

Tianhe-I(A)
• 6,144 compute nodes; 24576 cores
• 2560 AMD Radeon HD 4870*2 GPU
• 98TB memory in total
• Rpeak: 4.700 pflops; Rmax: 2.566 

pflops

Jaguar:(Cray XT5)
• 224,256 x86-based AMD Opteron 

processor cores
• Rpeak:2.331 pflops; Rmax :1.759 

pflops
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Execution is not just about hardware
 The VAX fallacy
 Produce one instruction for 

every high-level concept
 Absurdity: polynomial multiply

• Single hardware instruction
• But Why? Is this really faster??

 RISC Philosophy
 Full System Design
 Hardware mechanisms viewed 

in context of complete system
 Cross-boundary optimization

 Modern programmer does 
not see assembly language
 Many do not even see “low-

level” languages like “C”
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WHAT IS PARALLEL 
PROGRAMMING?

Why parallel programming
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What is Parallel Computing?
 Traditionally, software has been written for serial 

computation
 To be run on a single computer having a single CPU
 A problem is broken into a discrete series of 

instructions
 Instructions are executed one after another
 Only one instruction may execute at any moment in 

time
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For example
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Parallel Computing
 In the simplest sense, parallel computing is the 

simultaneous use of multiple compute resources to 
solve a computational problem
 To be run using multiple CPUs
 A problem is broken into discrete parts that can be solved 

concurrently 
 Each part is further broken down to a series of instructions 
 Instructions from each part execute simultaneously on 

different CPUs 
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Example
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Example
 The compute resources might be

 A single computer with multiple processors 

 An arbitrary number of computers connected by a network 

 A combination of both 

 The computational problem should be able to
 Be broken apart into discrete pieces of work that can be solved 

simultaneously 

 Execute multiple program instructions at any moment in time 

 Be solved in less time with multiple compute resources than with a 
single compute resource
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Speedup
Goal of applications in using parallel machines:  Speedup

For a fixed problem size (input data set), performance = 1/time
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Learning Curve for Parallel Programs

 AMBER molecular dynamics simulation program
 Starting point was vector code for Cray-1
 145 MFLOP on Cray90, 406 for final version on 128-

processor Paragon,  891 on 128-processor Cray T3D



35

Commercial Computing
 Databases, online-transaction processing, decision support, 

data mining, data warehousing ...

 Also relies on parallelism for high end
 Scale not so large, but use much more wide-spread

 Computational power determines scale of business that can be handled

 TPC benchmarks (TPC-C order entry, TPC-D decision 
support)
 Explicit scaling criteria provided

 Size of enterprise scales with size of system

 Problem size no longer fixed as p increases, so throughput is used as a 
performance measure (transactions per minute or tpm)
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WHY DO WE NEED PARALLEL 
PROGRAMMING?

Why parallel programming
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Now we can get: single-source 
approach to multi- and many-core

Source：IDF2012
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However, the 
Parallelizing Compilers

• After 30 years of intensive research 
 only limited success in parallelism detection and 

program transformations 
• instruction-level parallelism at the basic-block level can be detected 

• parallelism in nested for-loops containing arrays with simple index 
expressions can be analyzed 

• analysis techniques, such as data dependence analysis, pointer analysis, flow 
sensitive analysis, abstract interpretation, ... when applied across procedure 
boundaries often take far too long and tend to be fragile, i.e., can break 
down after small changes in the program

 instead of training compilers to recognize parallelism, 
people have been trained to write programs 
that parallelize 
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A simple example
• Loop is a simple example of a code region that can 

benefit from parallelism

• Let’s look at one of the possible implementations of 
parallel for-loop
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Things to Consider in Creating a 
Parallelized “for-loop”

• Step 1
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Things to Consider in Creating a 
Parallelized “for-loop”

• Step 2
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Many Ways to Improve Naïve 
Implementation
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Parallel Programming Complexity
• Enough parallelism? (Amdahl’s Law)

• Granularity

• Locality

• Load balance

• Coordination and Synchronization

• All of these things makes parallel 
programming even harder than sequential 
programming
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Parallel Compared to Sequential 
Programming

• Has different costs, different advantages

• Requires different, unfamiliar algorithms

• Must use different abstractions

• More complex to understand a program’s behavior

• More difficult to control the interactions of the 
program’s components

• Knowledge/tools/understanding more primitive
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Is it really harder to “think” in parallel?
 Some would argue it is more natural to think 

in parallel…
 … and many examples exist in daily life
 House construction -- parallel tasks, wiring and 

plumbing performed at once (independence), but 
framing must precede wiring (dependence)
 Similarly, developing large software systems

 Assembly line manufacture - pipelining, many 
instances in process at once 

 Call center - independent calls executed 
simultaneously (data parallel) 

 “Multi-tasking” – all sorts of variations
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DISTRIBUTED COMPUTING
Why parallel programming
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Parallel vs Distributed Computing
 Parallel computing splits a single application up into tasks 

that are executed at the same time and is more like a top-
down approach

 Parallel computing is about decomposition
 how we can perform a single application concurrently

 how we can divide a computation into smaller parts which may 
potentially be executed in parallel

 Parallel computing consider how to reach a maximum degree 
of concurrency
 Scientific computing
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Parallel vs Distributed Computing
 Distributed computing considers a single application which 

is executed as a whole but at different locations and is more 
like a bottom-up approach

 Distributed computing is about composition
 What happens if many distributed processes interact with each other

 If a global function can be achieved although there is no global time or 
state

 Distributed computing considers reliability and availability
 Information/resource sharing
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Parallel vs Distributed Computing
 The differences are now blurred, especially after the 

introduction of grid computing and cloud computing

 The two related fields have many things in common 
 Multiple processors

 Networks connecting the processors

 Multiple computing activities and processes

 Input/output data distributed among processors
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The Network is the Computer

“when the network is as fast as the computer’s internal links, the 
machine disintegrates across the net into a set of special 
purpose appliances”
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Grid Computing
 Grid computing is the combination of computer resources 

from multiple administrative domains applied to a common 
task, usually to a scientific, technical or business problem that 
requires a great number of computer processing cycles or the 
need to process large amounts of data

 It is a form of distributed computing whereby a “super and 
virtual computer” is composed of a cluster of networked 
loosely coupled computers acting in concert to perform very 
large tasks

 This technology has been applied to computationally intensive 
scientific, mathematical, and academic problems, and used in 
commercial enterprise data intensive applications
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Cloud Computing
 A style of computing where massively scalable IT-related 

capabilities are provided “as a service” using Internet 
technologies to multiple external customers

 Cloud computing describes a new supplement, consumption 
and delivery model for IT services based on the Internet, and 
it typically involves the provision of dynamically scalable and 
often virtualized resources (storage, platform, 
infrastructure, and software) as a service over the Internet
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Conclusion
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 Certainly, it is no longer sufficient for even basic 
programmers to acquire only the traditional, 
conventional sequential programming skills

 Need for imparting a broad-based skill set in PDC 
technology at various levels in the educational 
fabric woven by Computer Science (CS) and 
Computer Engineering (CE) programs as well as 
related computational disciplines
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