SCTS js

Parallel Programming Principle and Practice

Lecture 8 —Programming Using

Message Passing Paradigm

/\%’E‘g Jin, Hai

=\

School of Computer Science and Technology

Huazhong University of Science and Technology

O O O O O O O

SCLCS _/fceco

oy

Outline

Principles of Message-Passing Programming

The Building Blocks: Send and Receive Operations
MPI:. the Message Passing Interface

Topologies and Embedding

Overlapping Communication with Computation
Collective Communication and Computation Operations

Groups and Communicators

wnl FraELT

Principles of SCTS (ooes

I\/Iessage Passmg Programmmg

The logical view of a machine supporting the message-
passing paradigm consists of p processes, each with its own
exclusive address space

[1 Each data element must belong to one of the partitions of the
space; hence, data must be explicitly partitioned and placed

[1 All interactions (read-only or read/write) require cooperation
of two processes - the process that has the data and the
process that wants to access the data

[l These two constraints make underlying costs very explicit to
the programmer

T Fra#xf 5

Principles of SCTS (ooes

I\/Iessage Passmg Programmlng

[1 Message-passing programs are often written using the
asynchronous or loosely synchronous paradigms

L1 In the asynchronous paradigm, all concurrent tasks execute
asynchronously

L1 In the loosely synchronous model, tasks or subsets of tasks
synchronize to perform interactions. Between these
Interactions, tasks execute completely asynchronously

[1 Most message-passing programs are written using the single
program multiple data (SPMD) model

poy FERELT

O O O O O O O

SCLCS _/fceco

oy

Outline

Principles of Message-Passing Programming

The Building Blocks: Send and Receive Operations
MPI:. the Message Passing Interface

Topologies and Embedding

Overlapping Communication with Computation
Collective Communication and Computation Operations

Groups and Communicators

wnl FrHELT S

The Building Blocks: SCTS (ot

Send and Recelve Ogeratlons

The prototypes of these operations are as follows
send(void *sendbuf, int nelems, int dest)

oy

receive(void *recvbuf, int nelems, int source)

[l Consider the following code segments

PO Pl

a = 100; receive(&a, 1, 0)
send(&a, 1, 1); printf ("$d\n", a);
a=20;

[The semantics of the send operation require that the value
received by process P1 must be 100 as opposed to O

[1 This motivates the design of the send and receive protocols

wnp Fra#xT 6

Non-Buffered Blocking SCTS - (ooe

I\/Iessage Passing Oeerations

A simple method for forcing send/receive semantics
IS for the send operation to return only when it is
safe to do so

In the non-buffered blocking send, the operation
does not return until the matching receive has been
encountered at the receiving process

ldling and deadlocks are major issues with non-
buffered blocking sends

wnl FraELF

Non-Buffered Blocking SCTS 52;__c

Message Passing OEerations

sending receiving szndng receiving sanding receing
process process process process process DIOCRSS
send I reguest to send I
4 d request io sen zend request to sen uest 1o send
okay to sen - recens recene
-:-ha:,' to send send -:-ha;.' io send

(a) Sender comes first; (b)) Sender and recerver come (c) Receiver comes first;
1dling at sender at about the same time; idling at recerver
wdling minsmized

Handshake for a blocking non-buffered send/receive operation.
It is easy to see that in cases where sender and receiver do not
reach communication point at similar times, there can be

considerable idling overheads. o pranst g

Buffered Blocking SCTS (ooes

I\/Iessage Passing OEerations

[1 A simple solution to the idling and deadlocking problem
outlined above is to rely on buffers at the sending and
receiving ends

[1 The sender simply copies the data into the designated buffer
and returns after the copy operation has been completed

[1 The data must be buffered at the receiving end as well

[1 Buffering trades off idling overhead for buffer copying
overhead

wnT FraELF o

Buffered Blocking SCTS - (ooe

Message Passing OQerations

sending receiving sending receiving
process process process process

send I send I I

|:| } Data copied to
cl I:nuﬂ‘er at receiver

recewe
I recei'..fe

Blocking buffered transfer protocols:

(a) in the presence of communication hardware with buffers at
send and receive ends

(b) in the absence of communication hardware, sender
Interrupts receiver and deposits data in buffer at receiver end

””F #’*ﬂﬁ)‘% 10

Buffered Blocking SCTS (ooes

I\/Iessage Passing Ogerations

Bounded buffer sizes can have signicant impact on performance.

PO Pl
for (1 = 0; i < 1000; i++){ for (1 = 0; i < 1000; i++){
produce data(&a) ; receive(&a, 1, 0);

send(&a, 1, 1); consume data(&a) ;

What if consumer was much slower than producer?

pp FEREET 4

Buffered Blocking SCTS - (ooe

I\/Iessage Passing Ogerations

Deadlocks are still possible with buffering since receive

operations block.

PO Pl
receive(&a, 1, 1); receive(&a, 1, 0);
send(&b, 1, 1); send (&b, 1, 0);

sy FEREET L

Non-Blocking SCTS (ooes

I\/Iessage Passmg Oeeratlons

The programmer must ensure semantics of the send and
receive

1 This class of non-blocking protocols returns from the send or
receive operation before it is semantically safe to do so

[1 Non-blocking operations are generally accompanied by a
check-status operation

[1 When used correctly, these primitives are capable of
overlapping communication overheads with useful
computations

[l Message passing libraries typically provide both blocking and
non-blocking primitives S FrasAT

Non-Blocking SCTS - (ooe

Message Passing C)Qerations

zending receiving sending receiving
process process process process
senq I request to zend s-enq I request to send
Unzafe to I Linzafe to I
dat:f:nl:i?: okay to send receive datauE:?r:E okay to send —
- =B |l Cay [l e

(a) Without hardware support (b) With hardware support
Non-blocking send and receive operations

(a) In absence of communication hardware
(b) in presence of communication hardware

ﬁ#"rf‘”ﬁk% 14

Send and Recelive Protocols

Buffered

Mon—-Buffered

Blocking Operations

SCTS fe_

Mon—Blocking Operations

Sending process
returns after data
has heen copied
info communication
huffer

Sending process
returns after initiating
DMA transfer to
buffer. This operation
may not be
completed on return

Sending process
blocks until
matching receive
cperation has been
encountered

send and Feceive
semantics assurad by

comesponding operation

Frogrammer must
explicitly ensure
semantics by polling
to verify completion

Space of possible protocols for send and receive operations

il FrHELT oS

O O O O O O O

SCTS _/oocL

oy

Outline

Principles of Message-Passing Programming

The Building Blocks: Send and Receive Operations
MPI: the Message Passing Interface

Topologies and Embedding

Overlapping Communication with Computation
Collective Communication and Computation Operations

Groups and Communicators

unT FrHELT 16

SCTS f

MPI. Message Passing Interface

O

MPI defines a standard library for message-passing that can
be used to develop portable message-passing programs
using either C or Fortran

The MPI standard defines both the syntax as well as the
semantics of a core set of library routines

Vendor implementations of MPI are available on almost all
commercial parallel computers

It is possible to write fully-functional message-passing
programs by using only the six routines

gy FrH#xT o

SCTS - (ooe
The Minimal Set of MPI Routines

MPI Init Initializes MPI

MPI Finalize Terminates MPI

MPI_Comm_size Determines the number of processes
MPI_Comm_rank Determines the label of calling process
MPI Send Sends a message

MPI Recv Recelves a message

T Fra#axt 18

SCS fsser

Starting and Terminating MPI Library

L

[l

MPI Init is called priorto any calls to other MPI routines.

Its purpose is to initialize the MPI environment

MPI Finalize Is called at the end of the computation, and it
performs various clean-up tasks to terminate the MPI
environment

The prototypes of these two functions are:

int MPI Init(int *argc, char ***argv)

int MPI Finalize ()
MPI Init also strips off any MPI related command-line
argu_ments
All MPI routines, data-types, and constants are prefixed by
“MPI_". The return code for successful completion is

MPI SUCCESS
ﬁ EXE T RS 19

SCTS f
Communicators

1 A communicator defines a communication domain - a set of
processes that are allowed to communicate with each other

[1 Information about communication domains is stored in
variables of type MPI Comm

[J Communicators are used as arguments to all message
transfer MPI routines

[1 A process can belong to many different (possibly overlapping)
communication domains

[1 MPI defines a default communicator called
MPI COMM WORLD which includes all the processes

””ﬁ ?‘f'f‘Hﬁk? 20

SCTS (ooes
Querying Information

[1 The MPI Comm size and MPI Comm rank functions are
used to determine the number of processes and the label of
the calling process, respectively

[l The calling sequences of these routines are as follows:
int MPI Comm size (MPI Comm comm, 1nt *size)

int MPI Comm rank (MPI Comm comm, 1int *rank)

1 The rank of a process is an integer that ranges from zero up
to the size of the communicator minus one

wnl FrAELF 5

SCTS @

Our First MPI Program

#include <mpi.h>

main(int argc, char *argv(])

{

int npes, myrank;

MPIL_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &npes);

MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

printf("From process %d out of %d, Hello World\n",
myrank, npes);

MPI_Finalize();

pop FEREET 2

SCS fsser

Sending and Recelving Messages

o

Ol

The basic functions for sending and receiving messages in MPI are the
MPI Sendand MPI Recv, respectively

The calling sequences of these routines are as follows:

int MPI Send(void *buf, int count, MPI Datatype
datatype, int dest, int tag, MPI Comm comm)

int MPI Recv(void *buf, int count, MPI Datatype
datatype, 1nt source, 1nt tag,
MPI Comm comm, MPI Status *status)

MPI provides equivalent datatypes for all C datatypes. This is done for
portability reasons

The datatype MPI BYTE corresponds to a byte (8 bits) and MPI PACKED
corresponds to a collection of data items that has been created by
packing non-contiguous data

The message-tag can take values ranging from zero up to the MPI defined

constant MPT TAG UB
pop FEREAT o

MPI Datatypes

SCTS fe_

MPI Datatype

C Datatype

MPI CHAR

MPT SHORT

MPT INT

MPI_ LONG

MPI UNSIGNED CHAR
MPI UNSIGNED SHORT
MPI UNSIGNED

MPI UNSIGNED LONG
MPI FLOAT

MPI DOUBLE

MPI LONG DOUBLE
MPI BYTE

MPI PACKED

signed char
signed short int
signed 1int
signed long int
unsigned char
unsigned short int
unsigned int
unsigned long int
float

double

long double

ﬁ Fraur¥ o,

SCS fsser

Sending and Recelving Messages

[

[l

MPI allows specification of wildcard arguments for both
source and tag

If source Is setto MPTI ANY SOURCE, then any process of the
communication domain can be the source of the message

If tag Is setto MPTI ANY TAG, then messages with any tag
are accepted

On the receive side, the message must be of length equal to
or less than the length field specified

iy FrH#LT o5

SCCS (femer
Sending and Recelving Messages

[1 On the receiving end, the status variable can be used to get
Information about the MPTI Recwv operation

[l The corresponding data structure contains:
typedef struct MPI Status {
int MPI SOURCE;
int MPI TAG;
int MPI ERROR; };

[0 The MPI Get count function returns the precise count of
data items received

int MPI Get count (MPI Status *status, MPI Datatype
datatype, 1nt *count)

T FraELT 56

SCTS (ooes
Avoiding Deadlocks

Consider:

int al[l0], b[10], myrank;
MPI Status status;

MPI Comm rank (MPI COMM WORLD, é&myrank);
1f (myrank == 0) {
MPI Send(a, 10, MPI INT, 1, 1, MPI COMM WORLD) ;
MPI Send(b, 10, MPI INT, 1, 2, MPI COMM WORLD) ;
}
else 1f (myrank == 1) {
MPI Recv (b, 10, MPI INT, O, 2, MPI COMM WORLD) ;
MPI Recv(a, 10, MPI INT, O, 1, MPI COMM WORLD) ;

If MPT Send is blocking, there is a deadlock
iy FrH#xT o

SCTS (ooes
Avoiding Deadlocks

Consider the following piece of code, in which process | sends
a message to process |1 + 1 (modulo the number of processes)
and receives a message from process I - 1 (module the
number of processes)

int a[l1l0], b[10], npes, myrank;
MPI Status status;

MPI Comm size (MPI COMM WORLD, &npes);

MPI Comm rank (MPI COMM WORLD, é&myrank);

MPI Send(a, 10, MPI INT, (myrank+l)S%npes, 1,
MPI COMM WORLD) ;

MPI Recv (b, 10, MPI INT, (myrank-l+npes)Snpes, 1,
MPI COMM WORLD) ;

Once again, we have a deadlock if MPT Send is blocking
il FraELT o8

SCTS (ooes
Avoiding Deadlocks

We can break the circular wait to avoid deadlocks as follows:

int a[l1l0], b[10], npes, myrank;
MPI Status status;

MPI Comm size (MPI COMM WORLD, &npes);
MPI Comm rank (MPI COMM WORLD, &myrank);
1f (myrank%$2 == 1) {
MPI Send(a, 10, MPI INT, (myrank+l)%npes, 1,
MPI COMM WORLD) ;
MPI Recv (b, 10, MPI INT, (myrank-l+npes)Ssnpes, 1,
MPI COMM WORLD) ;
}
else {
MPI Recv (b, 10, MPI INT, (myrank-l+npes)Ssnpes, 1,
MPI COMM WORLD) ;
MPI Send(a, 10, MPI INT, (myrank+l)S%npes, 1,
MPI COMM WORLD) ;

T FraELF g

Sending and Recelving SCTS (ooes

I\/Iessages Simultaneously

To exchange messages, MPI provides the following function:

int MPI Sendrecv (void *sendbuf, int sendcount,
MPI Datatype senddatatype, int dest, int
sendtag, void *recvbuf, int recvcount,
MPI Datatype recvdatatype, int source, int recvtag,
MPI Comm comm, MPI Status *status)

The arguments include arguments to the send and receive
functions. If we wish to use the same buffer for both send and
receive, we can use:

int MPI Sendrecv replace(void *buf, 1nt count,
MPI Datatype datatype, 1int dest, int sendtag,
int source, 1nt recvtag, MPI Comm comm,
MPI Status *status)

g FrH#xT 3o

O O O O O O O

SCTS _/oocL

oy

Outline

Principles of Message-Passing Programming

The Building Blocks: Send and Receive Operations
MPI:. the Message Passing Interface

Topologies and Embedding

Overlapping Communication with Computation
Collective Communication and Computation Operations

Groups and Communicators

gy FrH#LT 5

SCTS (ooes
Topologies and Embeddings

1 MPI allows a programmer to organize processors into logical
k-d meshes

[1 The processor ids in MPI COMM WORLD can be mapped to
other communicators (corresponding to higher-dimensional
meshes) in many ways

[l The goodness of any such mapping is determined by the
Interaction pattern of the underlying program and the topology
of the machine

1 MPI does not provide the programmer any control over these
mappings

””9 Franhr¥ 3

0 1 2 | 3
4 B 5 | 7
8 g |10 | 17
1211314 [15

(2) Pow-major

SCTS (ooes
Topologies and Embeddings
o]« |8 12 I? 3———1—-!':- 0 1 3| 2
1 5 0 13 'i. __.E! T-.__é. < 5 i x]
!
2 g |10 [14 Te1-43 é‘-— + 12113 115 | 14
l H l
3 711115 1% 1I?_- -0 2 g |11 |10
) Colmm—major ic) Space-filling curve (d) Hypercubs
AP DLApLE Laping

mapping

[1 Different ways to map a set of processes to a two-dimensional
grid

>
>
>

(a) and (b) show a row- and column-wise mapping of these processes

(c) shows a mapping that follows a space-filling curve (dotted line)

(d) shows a mapping in which neighboring processes are directly
connected in a hypercube

T Frasaxt 53

Creating and Using SCTS (ooes
Cartesian ToEoIogies

[l We can create cartesian topologies using the function:

int MPI Cart create (MPI Comm comm old, int ndims,

int *dims, 1nt *periods, 1int reorder,
MPI Comm *comm cart)

This function takes the processes in the old communicator
and creates a new communicator with dims dimensions

[0 Each processor can now be identified in this new cartesian
topology by a vector of dimension dims

s AT 5,

Creating and Using SCTS (ooes

Cartesian ToEoIogieS

[1 Since sending and receiving messages still require (one-
dimensional) ranks, MPI provides routines to convert ranks to
cartesian coordinates and vice-versa

int MPI Cart coord(MPI Comm comm cart, int rank, int maxdims,

int *coords)

int MPI Cart rank (MPI Comm comm cart, int *coords, int *rank)

[J The most common operation on cartesian topologies is a
shift. To determine the rank of source and destination of such
shifts, MPI provides the following function:

int MPI Cart shift (MPI Comm comm cart, int dir, int s step,

int *rank source, int *rank dest)

O O O O O O O

SCLCS _/fceco

oy

Outline

Principles of Message-Passing Programming

The Building Blocks: Send and Receive Operations
MPI:. the Message Passing Interface

Topologies and Embedding

Overlapping Communication with Computation
Collective Communication and Computation Operations

Groups and Communicators

mnT FrH#xT 30

Overlapping Communication SCTS /s

with ComEutation

[1 In order to overlap communication with computation, MPI
provides a pair of functions for performing non-blocking send

and receive operations

int MPI Isend(void *buf, 1int count, MPI Datatype datatype,
int dest, int tag, MPI Comm comm,
MPI Request *request)

int MPI Irecv(void *buf, 1int count, MPI Datatype datatype,
int source, int tag, MPI Comm comm,
MPI Request *request)

[1 These operations return before the operations have been
completed. Function MPI Test tests whether or not the non-
blocking send or receive operation identified by its request
has finished
int MPI Test (MPI Request *request, 1int *flag,

MPI Status *status)

[0 MPI Wait waits for the operation to complete
int MPI ~Wait (MPI Request *request, MPI Status *status)

_??””“ﬁ 37

SCTS (ooes
Avoiding Deadlocks

Using non-blocking operations remove most deadlocks
Consider:

int al(l0], b[1l0], myrank;

MPI Status status;

MPI Comm rank (MPI COMM WORLD, &myrank);
if (myrank == 0) {
MPI Send(a, 10, MPI INT, 1, 1, MPI COMM WORLD) ;
MPI Send(b, 10, MPI INT, 1, 2, MPI COMM WORLD);
}
else if (myrank == 1) {

MPI Recv(b, 10, MPI INT, 0, 2, &status, MPI COMM WORLD) ;
MPI Recv(a, 10, MPI INT, 0, 1, &status, MPI COMM WORLD) ;

}

Replacing either the send or the receive operations with non-
blocking counterparts fixes this deadlock
il FraELF 38

O O O O O O O

SCLCS _/fceco

oy

Outline

Principles of Message-Passing Programming

The Building Blocks: Send and Receive Operations
MPI:. the Message Passing Interface

Topologies and Embedding

Overlapping Communication with Computation
Collective Communication and Computation Operations

Groups and Communicators

T Frauaxt 5o

Collective Communication and S¢S -@m
Computation Operations

[1 MPI provides an extensive set of functions for performing
common collective communication operations

[1 Each of these operations is defined over a group
corresponding to the communicator

L1 All processors in a communicator must call these operations

wnT FraELT 4o

SCL_S [CGCL
Collective Communication Operations

[1 The barrier synchronization operation is performed in MPI
using:
int MPI Barrier (MPI Comm comm)
[1 The one-to-all broadcast operation is

int MPI Bcast (void *buf, int count, MPI Datatype

datatype, int source, MPI Comm comm)

[1 The all-to-one reduction operation is:

int MPI Reduce (void *sendbuf, void *recvbuf, int count,
MPI Datatype datatype, MPI Op op, int target,

MPI Comm comm)

unp Fr#ELF 4

Broadcast: Effect

data _

Ag

1l
1
2
3

¥

Processes

SCTS 56_

broadcast
q

2| P P

ﬁ#"f'ﬂﬁk? 42

MPI| Reduce

¥ | Dy

PIOCESSEN

reduce

SCTS fe_

g FrH#LT 43

SCTS fs

Predefined Reduction Operations

Operation Meaning Datatypes

MPI MAX Maximum C integers and floating point
MPI MIN Minimum C integers and floating point
MPI SUM Sum C integers and floating point
MPI PROD Product C integers and floating point
MPI_LAND Logical AND C integers

MPI_BAND Bit-wise AND C integers and byte
MPI_LOR Logical OR C integers

MPI_BOR Bit-wise OR C integers and byte
MPI_LXOR Logical XOR C integers

MPI_BXOR Bit-wise XOR C integers and byte

MPI MAXLOC max-min value-location Data-pairs

MPI_MINLOC min-min value-location Data-pairs

unT Fra#ExE 44

SCCS (femer
Collective Communication Operations

[1 The operation MPT MAXLOC combines pairs of values (v;, |;)
and returns the pair (v,) such that v is the maximum among
all v; 's and | is the corresponding [; (if there are more than
one, it is the smallest among all these [, 's)

[MPI MINLOC does the same, except for minimum value of

Vi.

g 7) 7
7 . -
Process 0 I - 3 4 .
MinLoc (Value, Procesa) = (11, 2)
MaxLoo (Value, Procemsa) = (17, 1)

An example use of the MPT MINLOC and MPI MAXLOC operators

SCS fsser

Collective Communication Operations

MPI datatypes for data-pairs used with the MPT MAXLOC
and MPI MINLOC reduction operations

MPI Datatype

C Datatype

MPI 2INT

MPI SHORT INT

MPI LONG INT

MPI LONG DOUBLE INT
MPI FLOAT INT

MPI DOUBLE INT

pair of ints

short and int

long and int

long double and int
float and int

double and int

wnp FEREXT 46

SCL_S [CGCL
Collective Communication Operations

L1 If the result of the reduction operation is needed by all
processes, MPI provides:

int MPI Allreduce (void *sendbuf, void *recvbuf,

int count, MPI Datatype datatype, MPI Op op,

MPI Comm comm)

[0 To compute prefix-sums, MPI provides:

int MPI Scan(void *sendbuf, void *recvbuf, int

count, MPI Datatype datatype, MPI Op op,

MPI Comm comm)

T FrH#xT 4

SCL_S [CGCL
Collective Communication Operations

The gather operation is performed in MPI using

int MPI Gather (void *sendbuf, int sendcount,
MPI Datatype senddatatype, void *recvbuf,
int recvcount, MPI Datatype recvdatatype,

int target, MPI Comm comm)

The corresponding scatter operation

int MPI Scatter (void *sendbuf, 1nt sendcount,
MPI Datatype senddatatype, void *recvbuf,
int recvcount, MPI Datatype recvdatatype,
int source, MPI Comm comm)

pny FEREXAT 48

SCTS - (ooe
MPI_Gather and MPI _Scatter

data

A A1 A1 A3 geatter Ay

—-

A4

gather Aq

B — A

']
processes

g FrH#XT 4o

SCTS §e=
MPI Scatter()

MPI Scatter(u, 4, MPI_INT, v, 4, MPI_INT, 0, MPI_WORLD_COMM);

v=| 8| 9/10|11 2
v=|12]13| 14|15 3

T FrH#XT 5o

SCL_S [CGCL
Collective Communication Operations

MPI also provides the MPI Allgather function in
which the data are gathered at all the processes

int MPI Allgather (void *sendbuf, int sendcount,
MPI Datatype senddatatype, void *recvbuf, int

riggiggigéype recvdatatype, MPI Comm comm)
— » data
A A By Cj D
Bq allg ather Ad By ¢y D¢
(o Aq By & D¢
' Dg A4 B Cg D

PIOCESKES
51

SCL_S [CGCL
Collective Communication Operations

[1 The all-to-all personalized communication operation is
performed by:

int MPI Alltoall (void *sendbuf, 1nt sendcount,
MPI Datatype senddatatype,

volid *recvbuf,

int recvcount, MPI Datatype recvdatatype,

MPI Comm comm)

[1 Using this core set of collective operations, a number of
programs can be greatly simplified

gy FrH#xT o

MPI Alltoall

womomoo =

- s W

Send Buffer

ApEass bR sRERE
i i
H C ﬂ H

SCTS Qe_

Cu

m o \m WMo ™M

Reeceive Buffer

SCTS fe_
MPI Alltoall

MPI_Alltoall(u, 2, MPI_INT, v, 2, MPI_INT, MPI_WORLD_COMM);

array u Rank array v

1011112 13| 14| 15| 16| 17 0 10(11120 21| 30| 314041

20| 21]22|23|24|25|26|27 1 12 13]22]23|32|33|42|43

30131|32(33|34|35| 36|37 2 141 15] 24| 25| 34| 35| 44|45

401 41|42(43|44|45| 46|47 3 16| 17| 26| 27|36|37|46|47

po FtHRLT S,

O O O O O O O

SCTS _/oocL

oy

Outline

Principles of Message-Passing Programming

The Building Blocks: Send and Receive Operations
MPI:. the Message Passing Interface

Topologies and Embedding

Overlapping Communication with Computation
Collective Communication and Computation Operations

Groups and Communicators

T Fra#axT 5

SCTS (ooes
Groups and Communicators

1 In many parallel algorithms, communication operations need
to be restricted to certain subsets of processes

[1 MPI provides mechanisms for partitioning the group of
processes that belong to a communicator into subgroups
each corresponding to a different communicator

[l The simplest such mechanism is:

int MPI Comm split (MPI Comm comm, int color, int

key, MPI Comm *newcomm)

[1 This operation groups processors by color and sorts resulting
groups on the key

T FrH#xT S

SCTS @

Groups and Communicators

rocess

color
key

original rank

MW rans

o

2

a

1 1

1
0 L
1 1

1

2 4 a &
1 1
1 1

1 1

-,

Nl _/\}/
F'I_Cc-mm;séllt .

2 4 3 8
o1 2 4

Using MPI Comm split to split a group of processes in a
communicator into subgroups

T Fra#xf o

SCTS ﬁ

Groups and Communicators

L

In many parallel algorithms, processes are arranged in a
virtual grid, and in different steps of the algorithm,
communication needs to be restricted to a different subset of
the grid

MPI provides a convenient way to partition a Cartesian
topology to form lower-dimensional grids:

int MPI Cart sub (MPI Comm comm cart, int *keep dims,
MPI Comm *comm subcart)

If keep dims[i] IS true (non-zero value in C) then the ith
dimension is retained in the new sub-topology

The coordinate of a process in a sub-topology created by
MPI Cart sub can be obtained from its coordinate in the
original topology by disregarding the coordinates that
correspond to the dimensions that were not retained

iy FrH#xT o3

SCTS (ooes
Groups and Communicators

keep_dims[] = {frus, false, rus}

A

keep_dims]] = {false, false, true}

i

Splitting a Cartesian topology of size 2 x 4 X 7 into
(a) Four subgroups of size 2 x1x 7
(b) eight subgroups of size 1 x 1 x 7

T Fra#axT 5

SCS [feser
European MPI Users' Group Meeting

FUROMPE /ASIA 2014

KYOTO J\PX\ 9-12 SEPTEMBER, 2014

®
Home EuroMPI is the preeminent meeting for users, developers and researchers to ' News
interact and discuss new developments and applications of message-passing
Call for Papers . ; ; ;
parallel computing, in particular in and related to the Message Passing 19 Mar. 2014
Call for Workshops Interface (MPI). The annual meeting has a long, rich tradition, and has been Submission page,
held in European countries. In the 21st EuroMPI, the conference venue is in Special Issue page and
Important Dates) g :
Kyoto, Japan, outside of Europe. Visa information page
issi have been updated.
Submisgion Following past meetings, EuroMPI/ASIA 2014 will continue to focus on not just =
Special Issue MPI, but also extensions or altern'ative interfaces for high-performance 81 Jan. 9014
Fees and Registration homogeneous/heterogeneous/hyb?ld §ystem§, benchmarks, tool's, parallel /O, CEFW ia:closad.
fault tolerance, and parallel applications using MPI and other interfaces.
Program Through the presentation of contributed papers, poster presentations and 25 Dec. 2013

Tocritod Talla invited talks, attendees will have the opportunity to share ideas and CFP is announced

