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Principles of 

Message Passing Programming 

 The logical view of a machine supporting the message-

passing paradigm consists of p processes, each with its own 

exclusive address space

 Each data element must belong to one of the partitions of the 

space; hence, data must be explicitly partitioned and placed

 All interactions (read-only or read/write) require cooperation 

of two processes - the process that has the data and the 

process that wants to access the data

 These two constraints make underlying costs very explicit to 

the programmer
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Principles of 

Message Passing Programming

 Message-passing programs are often written using the 

asynchronous or loosely synchronous paradigms

 In the asynchronous paradigm, all concurrent tasks execute 

asynchronously

 In the loosely synchronous model, tasks or subsets of tasks 

synchronize to perform interactions. Between these 

interactions, tasks execute completely asynchronously

 Most message-passing programs are written using the single 

program multiple data (SPMD) model
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The Building Blocks: 

Send and Receive Operations 

 The prototypes of these operations are as follows

send(void *sendbuf, int nelems, int dest)

receive(void *recvbuf, int nelems, int source)

 Consider the following code segments

P0 P1

a = 100; receive(&a, 1, 0)

send(&a, 1, 1); printf("%d\n", a);

a = 0;

 The semantics of the send operation require that the value 

received by process P1 must be 100 as opposed to 0

 This motivates the design of the send and receive protocols
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Non-Buffered Blocking 

Message Passing Operations 

 A simple method for forcing send/receive semantics 

is for the send operation to return only when it is 

safe to do so

 In the non-buffered blocking send, the operation 

does not return until the matching receive has been 

encountered at the receiving process

 Idling and deadlocks are major issues with non-

buffered blocking sends
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Non-Buffered Blocking 

Message Passing Operations 

Handshake for a blocking non-buffered send/receive operation.

It is easy to see that in cases where sender and receiver do not

reach communication point at similar times, there can be 

considerable idling overheads.
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Buffered Blocking 

Message Passing Operations 

 A simple solution to the idling and deadlocking problem 

outlined above is to rely on buffers at the sending and 

receiving ends

 The sender simply copies the data into the designated buffer 

and returns after the copy operation has been completed

 The data must be buffered at the receiving end as well

 Buffering trades off idling overhead for buffer copying 

overhead
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Buffered Blocking 

Message Passing Operations

Blocking buffered transfer protocols: 

(a) in the presence of communication hardware with buffers at 

send and receive ends

(b) in the absence of communication hardware, sender 

interrupts receiver and deposits data in buffer at receiver end
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Buffered Blocking 

Message Passing Operations

Bounded buffer sizes can have signicant impact on performance.

P0 P1

for (i = 0; i < 1000; i++){   for (i = 0; i < 1000; i++){

produce_data(&a); receive(&a, 1, 0);

send(&a, 1, 1); consume_data(&a);

} }

What if consumer was much slower than producer?
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Buffered Blocking 

Message Passing Operations

Deadlocks are still possible with buffering since receive

operations block.

P0 P1

receive(&a, 1, 1); receive(&a, 1, 0);

send(&b, 1, 1); send(&b, 1, 0);
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Non-Blocking 

Message Passing Operations 

 The programmer must ensure semantics of the send and 

receive

 This class of non-blocking protocols returns from the send or 

receive operation before it is semantically safe to do so

 Non-blocking operations are generally accompanied by a 

check-status operation

 When used correctly, these primitives are capable of 

overlapping communication overheads with useful 

computations

 Message passing libraries typically provide both blocking and 

non-blocking primitives
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Non-Blocking 

Message Passing Operations

Non-blocking send and receive operations

(a) in absence of communication hardware

(b) in presence of communication hardware
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Send and Receive Protocols

Space of possible protocols for send and receive operations
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MPI: Message Passing Interface 

 MPI defines a standard library for message-passing that can 

be used to develop portable message-passing programs 

using either C or Fortran

 The MPI standard defines both the syntax as well as the 

semantics of a core set of library routines

 Vendor implementations of MPI are available on almost all 

commercial parallel computers

 It is possible to write fully-functional message-passing 

programs by using only the six routines
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The Minimal Set of MPI Routines

MPI_Init Initializes MPI

MPI_Finalize Terminates MPI

MPI_Comm_size Determines the number of processes

MPI_Comm_rank Determines the label of calling process 

MPI_Send Sends a message

MPI_Recv Receives a message
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Starting and Terminating MPI Library 

 MPI_Init is called prior to any calls to other MPI routines. 

Its purpose is to initialize the MPI environment

 MPI_Finalize is called at the end of the computation, and it 

performs various clean-up tasks to terminate the MPI 

environment

 The prototypes of these two functions are: 

int MPI_Init(int *argc, char ***argv) 

int MPI_Finalize()

 MPI_Init also strips off any MPI related command-line 

arguments

 All MPI routines, data-types, and constants are prefixed by 

“MPI_”. The return code for successful completion is 

MPI_SUCCESS
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Communicators 

 A communicator defines a communication domain - a set of 

processes that are allowed to communicate with each other 

 Information about communication domains is stored in 

variables of type MPI_Comm

 Communicators are used as arguments to all message 

transfer MPI routines

 A process can belong to many different (possibly overlapping) 

communication domains

 MPI defines a default communicator called 

MPI_COMM_WORLD which includes all the processes
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Querying Information

 The MPI_Comm_size and MPI_Comm_rank functions are 

used to determine the number of processes and the label of 

the calling process, respectively

 The calling sequences of these routines are as follows: 

int MPI_Comm_size(MPI_Comm comm, int *size) 

int MPI_Comm_rank(MPI_Comm comm, int *rank)

 The rank of a process is an integer that ranges from zero up 

to the size of the communicator minus one
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Our First MPI Program

#include <mpi.h>

main(int argc, char *argv[])
{

int npes, myrank;
MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &npes);
MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
printf("From process %d out of %d, Hello World!\n",

myrank, npes);
MPI_Finalize();

}
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Sending and Receiving Messages

 The basic functions for sending and receiving messages in MPI are the 

MPI_Send and MPI_Recv, respectively

 The calling sequences of these routines are as follows: 

int MPI_Send(void *buf, int count, MPI_Datatype 

datatype, int dest, int tag, MPI_Comm comm) 

int MPI_Recv(void *buf, int count, MPI_Datatype 

datatype, int source, int tag, 

MPI_Comm comm, MPI_Status *status)

 MPI provides equivalent datatypes for all C datatypes. This is done for 

portability reasons

 The datatype MPI_BYTE corresponds to a byte (8 bits) and MPI_PACKED

corresponds to a collection of data items that has been created by 

packing non-contiguous data

 The message-tag can take values ranging from zero up to the MPI defined 

constant MPI_TAG_UB
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MPI Datatypes 

MPI Datatype C Datatype 

MPI_CHAR signed char 

MPI_SHORT signed short int 

MPI_INT signed int 

MPI_LONG signed long int 

MPI_UNSIGNED_CHAR unsigned char 

MPI_UNSIGNED_SHORT unsigned short int 

MPI_UNSIGNED unsigned int 

MPI_UNSIGNED_LONG unsigned long int 

MPI_FLOAT float 

MPI_DOUBLE double 

MPI_LONG_DOUBLE long double 

MPI_BYTE 

MPI_PACKED 
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Sending and Receiving Messages 

 MPI allows specification of wildcard arguments for both 

source and tag

 If source is set to MPI_ANY_SOURCE, then any process of the 

communication domain can be the source of the message

 If tag is set to MPI_ANY_TAG, then messages with any tag 

are accepted

 On the receive side, the message must be of length equal to 

or less than the length field specified
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Sending and Receiving Messages 

 On the receiving end, the status variable can be used to get 

information about the MPI_Recv operation

 The corresponding data structure contains:

typedef struct MPI_Status { 

int MPI_SOURCE; 

int MPI_TAG; 

int MPI_ERROR; }; 

 The MPI_Get_count function returns the precise count of 

data items received

int MPI_Get_count(MPI_Status *status, MPI_Datatype 

datatype, int *count)
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Avoiding Deadlocks

Consider:

int a[10], b[10], myrank;

MPI_Status status;

...

MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

if (myrank == 0) {

MPI_Send(a, 10, MPI_INT, 1, 1, MPI_COMM_WORLD);

MPI_Send(b, 10, MPI_INT, 1, 2, MPI_COMM_WORLD);

}

else if (myrank == 1) {

MPI_Recv(b, 10, MPI_INT, 0, 2, MPI_COMM_WORLD);

MPI_Recv(a, 10, MPI_INT, 0, 1, MPI_COMM_WORLD);

}

...

If MPI_Send is blocking, there is a deadlock



28

Avoiding Deadlocks

Consider the following piece of code, in which process i sends 

a message to process i + 1 (modulo the number of processes) 

and receives a message from process i - 1 (module the 

number of processes)

int a[10], b[10], npes, myrank;

MPI_Status status;

...

MPI_Comm_size(MPI_COMM_WORLD, &npes);

MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

MPI_Send(a, 10, MPI_INT, (myrank+1)%npes, 1, 

MPI_COMM_WORLD);

MPI_Recv(b, 10, MPI_INT, (myrank-1+npes)%npes, 1, 

MPI_COMM_WORLD);

...

Once again, we have a deadlock if MPI_Send is blocking
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Avoiding Deadlocks

We can break the circular wait to avoid deadlocks as follows:

int a[10], b[10], npes, myrank;

MPI_Status status;

...

MPI_Comm_size(MPI_COMM_WORLD, &npes);

MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

if (myrank%2 == 1) {

MPI_Send(a, 10, MPI_INT, (myrank+1)%npes, 1, 

MPI_COMM_WORLD);

MPI_Recv(b, 10, MPI_INT, (myrank-1+npes)%npes, 1, 

MPI_COMM_WORLD);

}

else {

MPI_Recv(b, 10, MPI_INT, (myrank-1+npes)%npes, 1, 

MPI_COMM_WORLD);

MPI_Send(a, 10, MPI_INT, (myrank+1)%npes, 1, 

MPI_COMM_WORLD);

}

…
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Sending and Receiving 

Messages Simultaneously

To exchange messages, MPI provides the following function:

int MPI_Sendrecv(void *sendbuf, int sendcount,

MPI_Datatype senddatatype, int dest, int 

sendtag, void *recvbuf, int recvcount, 

MPI_Datatype recvdatatype, int source, int recvtag,  

MPI_Comm comm, MPI_Status *status)

The arguments include arguments to the send and receive

functions. If we wish to use the same buffer for both send and

receive, we can use:

int MPI_Sendrecv_replace(void *buf, int count,

MPI_Datatype datatype, int dest, int sendtag,

int source, int recvtag, MPI_Comm comm,

MPI_Status *status)



3131

Outline

 Principles of Message-Passing Programming 

 The Building Blocks: Send and Receive Operations 

 MPI: the Message Passing Interface 

 Topologies and Embedding 

 Overlapping Communication with Computation 

 Collective Communication and Computation Operations 

 Groups and Communicators



32

Topologies and Embeddings 

 MPI allows a programmer to organize processors into logical 

k-d meshes

 The processor ids in MPI_COMM_WORLD can be mapped to 

other communicators (corresponding to higher-dimensional 

meshes) in many ways

 The goodness of any such mapping is determined by the 

interaction pattern of the underlying program and the topology 

of the machine

 MPI does not provide the programmer any control over these 

mappings
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Topologies and Embeddings

 Different ways to map a set of processes to a two-dimensional 

grid

 (a) and (b) show a row- and column-wise mapping of these processes

 (c) shows a mapping that follows a space-filling curve (dotted line)

 (d) shows a mapping in which neighboring processes are directly 

connected in a hypercube
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Creating and Using 

Cartesian Topologies 

 We can create cartesian topologies using the function: 

int MPI_Cart_create(MPI_Comm comm_old, int ndims, 

int *dims, int *periods, int reorder,     

MPI_Comm *comm_cart) 

This function takes the processes in the old communicator 

and creates a new communicator with dims dimensions

 Each processor can now be identified in this new cartesian 

topology by a vector of dimension dims



35

Creating and Using 

Cartesian Topologies

 Since sending and receiving messages still require (one-

dimensional) ranks, MPI provides routines to convert ranks to 

cartesian coordinates and vice-versa

int MPI_Cart_coord(MPI_Comm comm_cart, int rank, int maxdims, 

int *coords) 

int MPI_Cart_rank(MPI_Comm comm_cart, int *coords, int *rank)

 The most common operation on cartesian topologies is a 

shift. To determine the rank of source and destination of such 

shifts, MPI provides the following function: 

int MPI_Cart_shift(MPI_Comm comm_cart, int dir, int s_step, 

int *rank_source, int *rank_dest)
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Overlapping Communication

with Computation 
 In order to overlap communication with computation, MPI 

provides a pair of functions for performing non-blocking send 
and receive operations
int MPI_Isend(void *buf, int count, MPI_Datatype datatype, 

int dest, int tag, MPI_Comm comm, 

MPI_Request *request) 

int MPI_Irecv(void *buf, int count, MPI_Datatype datatype, 

int source, int tag, MPI_Comm comm, 

MPI_Request *request) 

 These operations return before the operations have been 
completed. Function MPI_Test tests whether or not the non-
blocking send or receive operation identified by its request 
has finished
int MPI_Test(MPI_Request *request, int *flag, 

MPI_Status *status)

 MPI_Wait waits for the operation to complete
int MPI_Wait(MPI_Request *request, MPI_Status *status)
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Avoiding Deadlocks 

Using non-blocking operations remove most deadlocks 
Consider: 
int a[10], b[10], myrank; 

MPI_Status status; 

... 

MPI_Comm_rank(MPI_COMM_WORLD, &myrank); 

if (myrank == 0) { 

MPI_Send(a, 10, MPI_INT, 1, 1, MPI_COMM_WORLD); 

MPI_Send(b, 10, MPI_INT, 1, 2, MPI_COMM_WORLD); 

} 

else if (myrank == 1) { 

MPI_Recv(b, 10, MPI_INT, 0, 2, &status, MPI_COMM_WORLD); 

MPI_Recv(a, 10, MPI_INT, 0, 1, &status, MPI_COMM_WORLD); 

} 

... 

Replacing either the send or the receive operations with non-
blocking counterparts fixes this deadlock
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Collective Communication and 

Computation Operations 

 MPI provides an extensive set of functions for performing 

common collective communication operations

 Each of these operations is defined over a group 

corresponding to the communicator

 All processors in a communicator must call these operations
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Collective Communication Operations 

 The barrier synchronization operation is performed in MPI 

using: 

int MPI_Barrier(MPI_Comm comm) 

 The one-to-all broadcast operation is

int MPI_Bcast(void *buf, int count, MPI_Datatype 

datatype, int source, MPI_Comm comm) 

 The all-to-one reduction operation is: 

int MPI_Reduce(void *sendbuf, void *recvbuf, int count, 

MPI_Datatype datatype, MPI_Op op, int target, 

MPI_Comm comm)
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Broadcast: Effect
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MPI_Reduce 
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Predefined Reduction Operations 

Operation Meaning Datatypes

MPI_MAX Maximum C integers and floating point 

MPI_MIN Minimum C integers and floating point 

MPI_SUM Sum C integers and floating point 

MPI_PROD Product C integers and floating point 

MPI_LAND Logical AND C integers 

MPI_BAND Bit-wise AND C integers and byte 

MPI_LOR Logical OR C integers 

MPI_BOR Bit-wise OR C integers and byte 

MPI_LXOR Logical XOR C integers 

MPI_BXOR Bit-wise XOR C integers and byte 

MPI_MAXLOC max-min value-location Data-pairs 

MPI_MINLOC min-min value-location Data-pairs 
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Collective Communication Operations

 The operation MPI_MAXLOC combines pairs of values (vi, li) 

and returns the pair (v, l) such that v is the maximum among 

all vi 's and l is the corresponding li (if there are more than 

one, it is the smallest among all these li 's)

 MPI_MINLOC does the same, except for minimum value of 

vi.

An example use of the MPI_MINLOC and MPI_MAXLOC operators
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Collective Communication Operations 

MPI datatypes for data-pairs used with the MPI_MAXLOC

and MPI_MINLOC reduction operations

MPI Datatype C Datatype 

MPI_2INT pair of ints 

MPI_SHORT_INT short and int

MPI_LONG_INT long and int

MPI_LONG_DOUBLE_INT long double and int

MPI_FLOAT_INT float and int

MPI_DOUBLE_INT double and int
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Collective Communication Operations 

 If the result of the reduction operation is needed by all 

processes, MPI provides: 

int MPI_Allreduce(void *sendbuf, void *recvbuf, 

int count, MPI_Datatype datatype, MPI_Op op, 

MPI_Comm comm) 

 To compute prefix-sums, MPI provides: 

int MPI_Scan(void *sendbuf, void *recvbuf, int 

count, MPI_Datatype datatype, MPI_Op op, 

MPI_Comm comm)
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Collective Communication Operations 

 The gather operation is performed in MPI using
int MPI_Gather(void *sendbuf, int sendcount, 

MPI_Datatype senddatatype, void *recvbuf, 

int recvcount, MPI_Datatype recvdatatype, 

int target, MPI_Comm comm)

 The corresponding scatter operation
int MPI_Scatter(void *sendbuf, int sendcount, 

MPI_Datatype senddatatype, void *recvbuf, 

int recvcount, MPI_Datatype recvdatatype, 

int source, MPI_Comm comm)
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MPI_Gather and MPI_Scatter 
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MPI Scatter()
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Collective Communication Operations 

 MPI also provides the MPI_Allgather function in 
which the data are gathered at all the processes 

int MPI_Allgather(void *sendbuf, int sendcount, 
MPI_Datatype senddatatype, void *recvbuf, int 

recvcount, 
MPI_Datatype recvdatatype, MPI_Comm comm)
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Collective Communication Operations 

 The all-to-all personalized communication operation is 

performed by: 

int MPI_Alltoall(void *sendbuf, int sendcount, 

MPI_Datatype senddatatype, 

void *recvbuf, 

int recvcount, MPI_Datatype recvdatatype, 

MPI_Comm comm) 

 Using this core set of collective operations, a number of 

programs can be greatly simplified
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MPI_Alltoall 
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MPI_Alltoall 
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Groups and Communicators 

 In many parallel algorithms, communication operations need 

to be restricted to certain subsets of processes

 MPI provides mechanisms for partitioning the group of 

processes that belong to a communicator into subgroups 

each corresponding to a different communicator

 The simplest such mechanism is: 

int MPI_Comm_split(MPI_Comm comm, int color, int 

key, MPI_Comm *newcomm) 

 This operation groups processors by color and sorts resulting 

groups on the key
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Groups and Communicators

Using MPI_Comm_split to split a group of processes in a 

communicator into subgroups
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Groups and Communicators 

 In many parallel algorithms, processes are arranged in a 

virtual grid, and in different steps of the algorithm, 

communication needs to be restricted to a different subset of 

the grid

 MPI provides a convenient way to partition a Cartesian 

topology to form lower-dimensional grids: 
int MPI_Cart_sub(MPI_Comm comm_cart, int *keep_dims, 

MPI_Comm *comm_subcart) 

 If keep_dims[i] is true (non-zero value in C) then the ith 

dimension is retained in the new sub-topology

 The coordinate of a process in a sub-topology created by 

MPI_Cart_sub can be obtained from its coordinate in the 

original topology by disregarding the coordinates that 

correspond to the dimensions that were not retained
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Groups and Communicators

Splitting a Cartesian topology of size 2 x 4 x 7 into 

(a) Four subgroups of size 2 x 1 x 7

(b) eight subgroups of size 1 x 1 x 7
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