
Parallel Programming Principle and Practice

Lecture 8 —Programming Using

Message Passing Paradigm

Jin, Hai

School of Computer Science and Technology

Huazhong University of Science and Technology

22

Outline

 Principles of Message-Passing Programming

 The Building Blocks: Send and Receive Operations

 MPI: the Message Passing Interface

 Topologies and Embedding

 Overlapping Communication with Computation

 Collective Communication and Computation Operations

 Groups and Communicators

3

Principles of

Message Passing Programming

 The logical view of a machine supporting the message-

passing paradigm consists of p processes, each with its own

exclusive address space

 Each data element must belong to one of the partitions of the

space; hence, data must be explicitly partitioned and placed

 All interactions (read-only or read/write) require cooperation

of two processes - the process that has the data and the

process that wants to access the data

 These two constraints make underlying costs very explicit to

the programmer

4

Principles of

Message Passing Programming

 Message-passing programs are often written using the

asynchronous or loosely synchronous paradigms

 In the asynchronous paradigm, all concurrent tasks execute

asynchronously

 In the loosely synchronous model, tasks or subsets of tasks

synchronize to perform interactions. Between these

interactions, tasks execute completely asynchronously

 Most message-passing programs are written using the single

program multiple data (SPMD) model

55

Outline

 Principles of Message-Passing Programming

 The Building Blocks: Send and Receive Operations

 MPI: the Message Passing Interface

 Topologies and Embedding

 Overlapping Communication with Computation

 Collective Communication and Computation Operations

 Groups and Communicators

6

The Building Blocks:

Send and Receive Operations

 The prototypes of these operations are as follows

send(void *sendbuf, int nelems, int dest)

receive(void *recvbuf, int nelems, int source)

 Consider the following code segments

P0 P1

a = 100; receive(&a, 1, 0)

send(&a, 1, 1); printf("%d\n", a);

a = 0;

 The semantics of the send operation require that the value

received by process P1 must be 100 as opposed to 0

 This motivates the design of the send and receive protocols

7

Non-Buffered Blocking

Message Passing Operations

 A simple method for forcing send/receive semantics

is for the send operation to return only when it is

safe to do so

 In the non-buffered blocking send, the operation

does not return until the matching receive has been

encountered at the receiving process

 Idling and deadlocks are major issues with non-

buffered blocking sends

8

Non-Buffered Blocking

Message Passing Operations

Handshake for a blocking non-buffered send/receive operation.

It is easy to see that in cases where sender and receiver do not

reach communication point at similar times, there can be

considerable idling overheads.

9

Buffered Blocking

Message Passing Operations

 A simple solution to the idling and deadlocking problem

outlined above is to rely on buffers at the sending and

receiving ends

 The sender simply copies the data into the designated buffer

and returns after the copy operation has been completed

 The data must be buffered at the receiving end as well

 Buffering trades off idling overhead for buffer copying

overhead

10

Buffered Blocking

Message Passing Operations

Blocking buffered transfer protocols:

(a) in the presence of communication hardware with buffers at

send and receive ends

(b) in the absence of communication hardware, sender

interrupts receiver and deposits data in buffer at receiver end

11

Buffered Blocking

Message Passing Operations

Bounded buffer sizes can have signicant impact on performance.

P0 P1

for (i = 0; i < 1000; i++){ for (i = 0; i < 1000; i++){

produce_data(&a); receive(&a, 1, 0);

send(&a, 1, 1); consume_data(&a);

} }

What if consumer was much slower than producer?

12

Buffered Blocking

Message Passing Operations

Deadlocks are still possible with buffering since receive

operations block.

P0 P1

receive(&a, 1, 1); receive(&a, 1, 0);

send(&b, 1, 1); send(&b, 1, 0);

13

Non-Blocking

Message Passing Operations

 The programmer must ensure semantics of the send and

receive

 This class of non-blocking protocols returns from the send or

receive operation before it is semantically safe to do so

 Non-blocking operations are generally accompanied by a

check-status operation

 When used correctly, these primitives are capable of

overlapping communication overheads with useful

computations

 Message passing libraries typically provide both blocking and

non-blocking primitives

14

Non-Blocking

Message Passing Operations

Non-blocking send and receive operations

(a) in absence of communication hardware

(b) in presence of communication hardware

15

Send and Receive Protocols

Space of possible protocols for send and receive operations

1616

Outline

 Principles of Message-Passing Programming

 The Building Blocks: Send and Receive Operations

 MPI: the Message Passing Interface

 Topologies and Embedding

 Overlapping Communication with Computation

 Collective Communication and Computation Operations

 Groups and Communicators

17

MPI: Message Passing Interface

 MPI defines a standard library for message-passing that can

be used to develop portable message-passing programs

using either C or Fortran

 The MPI standard defines both the syntax as well as the

semantics of a core set of library routines

 Vendor implementations of MPI are available on almost all

commercial parallel computers

 It is possible to write fully-functional message-passing

programs by using only the six routines

18

The Minimal Set of MPI Routines

MPI_Init Initializes MPI

MPI_Finalize Terminates MPI

MPI_Comm_size Determines the number of processes

MPI_Comm_rank Determines the label of calling process

MPI_Send Sends a message

MPI_Recv Receives a message

19

Starting and Terminating MPI Library

 MPI_Init is called prior to any calls to other MPI routines.

Its purpose is to initialize the MPI environment

 MPI_Finalize is called at the end of the computation, and it

performs various clean-up tasks to terminate the MPI

environment

 The prototypes of these two functions are:

int MPI_Init(int *argc, char ***argv)

int MPI_Finalize()

 MPI_Init also strips off any MPI related command-line

arguments

 All MPI routines, data-types, and constants are prefixed by

“MPI_”. The return code for successful completion is

MPI_SUCCESS

20

Communicators

 A communicator defines a communication domain - a set of

processes that are allowed to communicate with each other

 Information about communication domains is stored in

variables of type MPI_Comm

 Communicators are used as arguments to all message

transfer MPI routines

 A process can belong to many different (possibly overlapping)

communication domains

 MPI defines a default communicator called

MPI_COMM_WORLD which includes all the processes

21

Querying Information

 The MPI_Comm_size and MPI_Comm_rank functions are

used to determine the number of processes and the label of

the calling process, respectively

 The calling sequences of these routines are as follows:

int MPI_Comm_size(MPI_Comm comm, int *size)

int MPI_Comm_rank(MPI_Comm comm, int *rank)

 The rank of a process is an integer that ranges from zero up

to the size of the communicator minus one

22

Our First MPI Program

#include <mpi.h>

main(int argc, char *argv[])
{

int npes, myrank;
MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &npes);
MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
printf("From process %d out of %d, Hello World!\n",

myrank, npes);
MPI_Finalize();

}

23

Sending and Receiving Messages

 The basic functions for sending and receiving messages in MPI are the

MPI_Send and MPI_Recv, respectively

 The calling sequences of these routines are as follows:

int MPI_Send(void *buf, int count, MPI_Datatype

datatype, int dest, int tag, MPI_Comm comm)

int MPI_Recv(void *buf, int count, MPI_Datatype

datatype, int source, int tag,

MPI_Comm comm, MPI_Status *status)

 MPI provides equivalent datatypes for all C datatypes. This is done for

portability reasons

 The datatype MPI_BYTE corresponds to a byte (8 bits) and MPI_PACKED

corresponds to a collection of data items that has been created by

packing non-contiguous data

 The message-tag can take values ranging from zero up to the MPI defined

constant MPI_TAG_UB

24

MPI Datatypes

MPI Datatype C Datatype

MPI_CHAR signed char

MPI_SHORT signed short int

MPI_INT signed int

MPI_LONG signed long int

MPI_UNSIGNED_CHAR unsigned char

MPI_UNSIGNED_SHORT unsigned short int

MPI_UNSIGNED unsigned int

MPI_UNSIGNED_LONG unsigned long int

MPI_FLOAT float

MPI_DOUBLE double

MPI_LONG_DOUBLE long double

MPI_BYTE

MPI_PACKED

25

Sending and Receiving Messages

 MPI allows specification of wildcard arguments for both

source and tag

 If source is set to MPI_ANY_SOURCE, then any process of the

communication domain can be the source of the message

 If tag is set to MPI_ANY_TAG, then messages with any tag

are accepted

 On the receive side, the message must be of length equal to

or less than the length field specified

26

Sending and Receiving Messages

 On the receiving end, the status variable can be used to get

information about the MPI_Recv operation

 The corresponding data structure contains:

typedef struct MPI_Status {

int MPI_SOURCE;

int MPI_TAG;

int MPI_ERROR; };

 The MPI_Get_count function returns the precise count of

data items received

int MPI_Get_count(MPI_Status *status, MPI_Datatype

datatype, int *count)

27

Avoiding Deadlocks

Consider:

int a[10], b[10], myrank;

MPI_Status status;

...

MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

if (myrank == 0) {

MPI_Send(a, 10, MPI_INT, 1, 1, MPI_COMM_WORLD);

MPI_Send(b, 10, MPI_INT, 1, 2, MPI_COMM_WORLD);

}

else if (myrank == 1) {

MPI_Recv(b, 10, MPI_INT, 0, 2, MPI_COMM_WORLD);

MPI_Recv(a, 10, MPI_INT, 0, 1, MPI_COMM_WORLD);

}

...

If MPI_Send is blocking, there is a deadlock

28

Avoiding Deadlocks

Consider the following piece of code, in which process i sends

a message to process i + 1 (modulo the number of processes)

and receives a message from process i - 1 (module the

number of processes)

int a[10], b[10], npes, myrank;

MPI_Status status;

...

MPI_Comm_size(MPI_COMM_WORLD, &npes);

MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

MPI_Send(a, 10, MPI_INT, (myrank+1)%npes, 1,

MPI_COMM_WORLD);

MPI_Recv(b, 10, MPI_INT, (myrank-1+npes)%npes, 1,

MPI_COMM_WORLD);

...

Once again, we have a deadlock if MPI_Send is blocking

29

Avoiding Deadlocks

We can break the circular wait to avoid deadlocks as follows:

int a[10], b[10], npes, myrank;

MPI_Status status;

...

MPI_Comm_size(MPI_COMM_WORLD, &npes);

MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

if (myrank%2 == 1) {

MPI_Send(a, 10, MPI_INT, (myrank+1)%npes, 1,

MPI_COMM_WORLD);

MPI_Recv(b, 10, MPI_INT, (myrank-1+npes)%npes, 1,

MPI_COMM_WORLD);

}

else {

MPI_Recv(b, 10, MPI_INT, (myrank-1+npes)%npes, 1,

MPI_COMM_WORLD);

MPI_Send(a, 10, MPI_INT, (myrank+1)%npes, 1,

MPI_COMM_WORLD);

}

…

30

Sending and Receiving

Messages Simultaneously

To exchange messages, MPI provides the following function:

int MPI_Sendrecv(void *sendbuf, int sendcount,

MPI_Datatype senddatatype, int dest, int

sendtag, void *recvbuf, int recvcount,

MPI_Datatype recvdatatype, int source, int recvtag,

MPI_Comm comm, MPI_Status *status)

The arguments include arguments to the send and receive

functions. If we wish to use the same buffer for both send and

receive, we can use:

int MPI_Sendrecv_replace(void *buf, int count,

MPI_Datatype datatype, int dest, int sendtag,

int source, int recvtag, MPI_Comm comm,

MPI_Status *status)

3131

Outline

 Principles of Message-Passing Programming

 The Building Blocks: Send and Receive Operations

 MPI: the Message Passing Interface

 Topologies and Embedding

 Overlapping Communication with Computation

 Collective Communication and Computation Operations

 Groups and Communicators

32

Topologies and Embeddings

 MPI allows a programmer to organize processors into logical

k-d meshes

 The processor ids in MPI_COMM_WORLD can be mapped to

other communicators (corresponding to higher-dimensional

meshes) in many ways

 The goodness of any such mapping is determined by the

interaction pattern of the underlying program and the topology

of the machine

 MPI does not provide the programmer any control over these

mappings

33

Topologies and Embeddings

 Different ways to map a set of processes to a two-dimensional

grid

 (a) and (b) show a row- and column-wise mapping of these processes

 (c) shows a mapping that follows a space-filling curve (dotted line)

 (d) shows a mapping in which neighboring processes are directly

connected in a hypercube

34

Creating and Using

Cartesian Topologies

 We can create cartesian topologies using the function:

int MPI_Cart_create(MPI_Comm comm_old, int ndims,

int *dims, int *periods, int reorder,

MPI_Comm *comm_cart)

This function takes the processes in the old communicator

and creates a new communicator with dims dimensions

 Each processor can now be identified in this new cartesian

topology by a vector of dimension dims

35

Creating and Using

Cartesian Topologies

 Since sending and receiving messages still require (one-

dimensional) ranks, MPI provides routines to convert ranks to

cartesian coordinates and vice-versa

int MPI_Cart_coord(MPI_Comm comm_cart, int rank, int maxdims,

int *coords)

int MPI_Cart_rank(MPI_Comm comm_cart, int *coords, int *rank)

 The most common operation on cartesian topologies is a

shift. To determine the rank of source and destination of such

shifts, MPI provides the following function:

int MPI_Cart_shift(MPI_Comm comm_cart, int dir, int s_step,

int *rank_source, int *rank_dest)

3636

Outline

 Principles of Message-Passing Programming

 The Building Blocks: Send and Receive Operations

 MPI: the Message Passing Interface

 Topologies and Embedding

 Overlapping Communication with Computation

 Collective Communication and Computation Operations

 Groups and Communicators

37

Overlapping Communication

with Computation
 In order to overlap communication with computation, MPI

provides a pair of functions for performing non-blocking send
and receive operations
int MPI_Isend(void *buf, int count, MPI_Datatype datatype,

int dest, int tag, MPI_Comm comm,

MPI_Request *request)

int MPI_Irecv(void *buf, int count, MPI_Datatype datatype,

int source, int tag, MPI_Comm comm,

MPI_Request *request)

 These operations return before the operations have been
completed. Function MPI_Test tests whether or not the non-
blocking send or receive operation identified by its request
has finished
int MPI_Test(MPI_Request *request, int *flag,

MPI_Status *status)

 MPI_Wait waits for the operation to complete
int MPI_Wait(MPI_Request *request, MPI_Status *status)

38

Avoiding Deadlocks

Using non-blocking operations remove most deadlocks
Consider:
int a[10], b[10], myrank;

MPI_Status status;

...

MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

if (myrank == 0) {

MPI_Send(a, 10, MPI_INT, 1, 1, MPI_COMM_WORLD);

MPI_Send(b, 10, MPI_INT, 1, 2, MPI_COMM_WORLD);

}

else if (myrank == 1) {

MPI_Recv(b, 10, MPI_INT, 0, 2, &status, MPI_COMM_WORLD);

MPI_Recv(a, 10, MPI_INT, 0, 1, &status, MPI_COMM_WORLD);

}

...

Replacing either the send or the receive operations with non-
blocking counterparts fixes this deadlock

3939

Outline

 Principles of Message-Passing Programming

 The Building Blocks: Send and Receive Operations

 MPI: the Message Passing Interface

 Topologies and Embedding

 Overlapping Communication with Computation

 Collective Communication and Computation Operations

 Groups and Communicators

40

Collective Communication and

Computation Operations

 MPI provides an extensive set of functions for performing

common collective communication operations

 Each of these operations is defined over a group

corresponding to the communicator

 All processors in a communicator must call these operations

41

Collective Communication Operations

 The barrier synchronization operation is performed in MPI

using:

int MPI_Barrier(MPI_Comm comm)

 The one-to-all broadcast operation is

int MPI_Bcast(void *buf, int count, MPI_Datatype

datatype, int source, MPI_Comm comm)

 The all-to-one reduction operation is:

int MPI_Reduce(void *sendbuf, void *recvbuf, int count,

MPI_Datatype datatype, MPI_Op op, int target,

MPI_Comm comm)

42

Broadcast: Effect

43

MPI_Reduce

44

Predefined Reduction Operations

Operation Meaning Datatypes

MPI_MAX Maximum C integers and floating point

MPI_MIN Minimum C integers and floating point

MPI_SUM Sum C integers and floating point

MPI_PROD Product C integers and floating point

MPI_LAND Logical AND C integers

MPI_BAND Bit-wise AND C integers and byte

MPI_LOR Logical OR C integers

MPI_BOR Bit-wise OR C integers and byte

MPI_LXOR Logical XOR C integers

MPI_BXOR Bit-wise XOR C integers and byte

MPI_MAXLOC max-min value-location Data-pairs

MPI_MINLOC min-min value-location Data-pairs

45

Collective Communication Operations

 The operation MPI_MAXLOC combines pairs of values (vi, li)

and returns the pair (v, l) such that v is the maximum among

all vi 's and l is the corresponding li (if there are more than

one, it is the smallest among all these li 's)

 MPI_MINLOC does the same, except for minimum value of

vi.

An example use of the MPI_MINLOC and MPI_MAXLOC operators

46

Collective Communication Operations

MPI datatypes for data-pairs used with the MPI_MAXLOC

and MPI_MINLOC reduction operations

MPI Datatype C Datatype

MPI_2INT pair of ints

MPI_SHORT_INT short and int

MPI_LONG_INT long and int

MPI_LONG_DOUBLE_INT long double and int

MPI_FLOAT_INT float and int

MPI_DOUBLE_INT double and int

47

Collective Communication Operations

 If the result of the reduction operation is needed by all

processes, MPI provides:

int MPI_Allreduce(void *sendbuf, void *recvbuf,

int count, MPI_Datatype datatype, MPI_Op op,

MPI_Comm comm)

 To compute prefix-sums, MPI provides:

int MPI_Scan(void *sendbuf, void *recvbuf, int

count, MPI_Datatype datatype, MPI_Op op,

MPI_Comm comm)

48

Collective Communication Operations

 The gather operation is performed in MPI using
int MPI_Gather(void *sendbuf, int sendcount,

MPI_Datatype senddatatype, void *recvbuf,

int recvcount, MPI_Datatype recvdatatype,

int target, MPI_Comm comm)

 The corresponding scatter operation
int MPI_Scatter(void *sendbuf, int sendcount,

MPI_Datatype senddatatype, void *recvbuf,

int recvcount, MPI_Datatype recvdatatype,

int source, MPI_Comm comm)

49

MPI_Gather and MPI_Scatter

50

MPI Scatter()

51

Collective Communication Operations

 MPI also provides the MPI_Allgather function in
which the data are gathered at all the processes

int MPI_Allgather(void *sendbuf, int sendcount,
MPI_Datatype senddatatype, void *recvbuf, int

recvcount,
MPI_Datatype recvdatatype, MPI_Comm comm)

52

Collective Communication Operations

 The all-to-all personalized communication operation is

performed by:

int MPI_Alltoall(void *sendbuf, int sendcount,

MPI_Datatype senddatatype,

void *recvbuf,

int recvcount, MPI_Datatype recvdatatype,

MPI_Comm comm)

 Using this core set of collective operations, a number of

programs can be greatly simplified

53

MPI_Alltoall

54

MPI_Alltoall

5555

Outline

 Principles of Message-Passing Programming

 The Building Blocks: Send and Receive Operations

 MPI: the Message Passing Interface

 Topologies and Embedding

 Overlapping Communication with Computation

 Collective Communication and Computation Operations

 Groups and Communicators

56

Groups and Communicators

 In many parallel algorithms, communication operations need

to be restricted to certain subsets of processes

 MPI provides mechanisms for partitioning the group of

processes that belong to a communicator into subgroups

each corresponding to a different communicator

 The simplest such mechanism is:

int MPI_Comm_split(MPI_Comm comm, int color, int

key, MPI_Comm *newcomm)

 This operation groups processors by color and sorts resulting

groups on the key

57

Groups and Communicators

Using MPI_Comm_split to split a group of processes in a

communicator into subgroups

58

Groups and Communicators

 In many parallel algorithms, processes are arranged in a

virtual grid, and in different steps of the algorithm,

communication needs to be restricted to a different subset of

the grid

 MPI provides a convenient way to partition a Cartesian

topology to form lower-dimensional grids:
int MPI_Cart_sub(MPI_Comm comm_cart, int *keep_dims,

MPI_Comm *comm_subcart)

 If keep_dims[i] is true (non-zero value in C) then the ith

dimension is retained in the new sub-topology

 The coordinate of a process in a sub-topology created by

MPI_Cart_sub can be obtained from its coordinate in the

original topology by disregarding the coordinates that

correspond to the dimensions that were not retained

59

Groups and Communicators

Splitting a Cartesian topology of size 2 x 4 x 7 into

(a) Four subgroups of size 2 x 1 x 7

(b) eight subgroups of size 1 x 1 x 7

60

European MPI Users' Group Meeting

