
Parallel Programming Principle and Practice

Lecture 5 — Parallel Programming: Performance

Jin, Hai

School of Computer Science and Technology

Huazhong University of Science and Technology

2

Outline
 Components of execution time as seen by processor

 Partitioning for performance

 Relationship of communication, data locality and

architecture

 Orchestration for performance

3

Processor-Centric Perspective

4

Outline

 Components of execution time as seen by processor

 Partitioning for performance

 Relationship of communication, data locality and architecture

 Orchestration for performance

5

Partitioning for Performance

 Balancing the workload and reducing wait time at synch
points

 Reducing inherent communication

 Reducing extra work

6

Load Balance and Synch Wait Time

 Limit on speedup: Speedupproblem(p) <

 Work includes data access and other costs

 Not just equal work, but must be busy at same time

 Four parts to load balance and reducing synch wait time
 Identify enough concurrency

 Decide how to manage it

 Determine the granularity at which to exploit it

 Reduce serialization and cost of synchronization

7

Identifying Concurrency
 Techniques seen for equation solver

 Loop structure, fundamental dependences, new algorithms

 Data Parallelism versus Function Parallelism
 Often see orthogonal levels of parallelism; e.g. VLSI routing

8

Identifying Concurrency
 Function parallelism

 entire large tasks (procedures) that can be done in parallel

on same or different data
 e.g. different independent grid computations in Ocean

e.g. pipelining, as in video encoding /decoding, or polygon rendering

 degree usually modest and does not grow with input size

 difficult to load balance

 often used to reduce synch between data parallel phases

9

Identifying Concurrency
 Most scalable programs data parallel

 Data parallelism
 Similar parallel operation sequences performed on elements of large

data structures
• e.g ocean equation solver, pixel-level image processing

 Such as resulting from parallelization of loops

 Usually easy to load balance (e.g ocean equation solver)

 Degree of concurrency usually increase with input or problem size.
e.g O(n2) in equation solver example

10

Load Balance and Synch Wait Time
 Limit on speedup: Speedupproblem(p)

 Work includes data access and other costs

 Not just equal work, but must be busy at same time

 Four parts to load balance and reducing synch wait time
 Identify enough concurrency

 Decide how to manage it

 Determine the granularity at which to exploit it

 Reduce serialization and cost of synchronization

11

Decide How to Manage Concurrency
 Static versus Dynamic techniques

 Static
 Algorithmic assignment based on input; will not change

 Low runtime overhead

 Computation must be predictable

 Preferable when applicable (except in multiprogrammed or
heterogeneous environment)

 Dynamic
 Adapt at runtime to balance load

 Can increase communication and reduce locality

 Can increase task management overheads

12

Dynamic Assignment
 Profile-based (semi-static)

 Profile work distribution at runtime, and repartition dynamically

 Applicable in many computations, e.g. some graphics

 Dynamic Tasking
 Deal with unpredictability in program or environment (e.g. Raytrace)

• computation, communication, and memory system interactions

• multiprogramming and heterogeneity

• used by runtime systems and OS too

 Pool of tasks; take and add tasks until done

 e.g. “self-scheduling” of loop iterations (shared loop counter)

13

Dynamic Tasking with Task Queues
 Centralized versus distributed queues
 Task stealing with distributed queues

 Can compromise communication and locality, and increase synchronization
 Whom to steal from, how many tasks to steal, ...
 Termination detection
 Maximum imbalance related to size of task

14

Impact of Dynamic Assignment
 On SGI Origin 2000 (cache-coherent shared memory)

15

Load Balance and Synch Wait Time
 Limit on speedup: Speedupproblem(p)

 Work includes data access and other costs

 Not just equal work, but must be busy at same time

 Four parts to load balance and reducing synch wait time
 Identify enough concurrency

 Decide how to manage it

 Determine the granularity at which to exploit it

 Reduce serialization and cost of synchronization

16

Determining Task Granularity
 Task granularity: amount of work associated with a task

 General rule
 Coarse-grained => often less load balance

 Fine-grained=> more overhead; often more communication &
contention

 Communication & contention actually affected by assignment,
not size
 Overhead by size itself too, particularly with task queues

17

Load Balance and Synch Wait Time
 Limit on speedup: Speedupproblem(p)

 Work includes data access and other costs

 Not just equal work, but must be busy at same time

 Four parts to load balance and reducing synch wait time
 Identify enough concurrency

 Decide how to manage it

 Determine the granularity at which to exploit it

 Reduce serialization and cost of synchronization

18

Reducing Serialization
 Careful about assignment and orchestration (including scheduling)
 Event synchronization

 Reduce use of conservative synchronization
• e.g. point-to-point instead of barriers, or granularity of pt-to-pt

 But fine-grained synch more difficult to program, more synch ops.
 Mutual exclusion

 Separate locks for separate data
• e.g. locking records in a database: lock per process, record, or field
• lock per task in task queue, not per queue
• finer grain => less contention/serialization, more space, less reuse

 Smaller, less frequent critical sections
• Do not do reading/testing in critical section, only modification
• e.g. searching for task to dequeue in task queue, building tree

 Stagger critical sections in time

19

Partitioning for Performance

 Balancing the workload and reducing wait time at synch
points

 Reducing inherent communication

 Reducing extra work

20

Reducing Inherent Communication
 Communication is expensive!

 Measure: communication to computation ratio

 Focus here on inherent communication
 Determined by assignment of tasks to processes

 Later see that actual communication can be greater

 Assign tasks that access same data to same process

 Solving communication and load balance NP-hard in general
case

 But simple heuristic solutions work well in practice
 Applications have structure

21

Implications of Communication-to-Computation Ratio

 If denominator is execution time, ratio gives average
bandwidth needs

 If denominator is operation count, gives extremes in impact of
latency and bandwidth
 Latency: assume no latency hiding

 Bandwidth: assume all latency hidden

 Reality is somewhere in between

 Actual impact of communication depends on structure & cost
as well

 Need to keep communication balanced across processors as well

22

Domain Decomposition
 Works well for scientific, engineering, graphics, …applications
 Exploits local-biased nature of physical problems

 Information requirements often short-range
Or long-range but fall off with distance

 Simple example: nearest-neighbor grid computation

 Depends on n,p : decreases with n, increases with p

23

Domain Decomposition
 Best domain decomposition depends on information requirements

 Nearest neighbor example: block versus strip decomposition

 Comm to comp: for block, for strip
 Retain block from here on

 Application dependent: strip may be better in other cases
 E.g. particle flow in tunnel

24

Finding a Domain Decomposition
 Static, by inspection

 Must be predictable: grid example above, and Ocean

 Static, but not by inspection
 Input-dependent, require analyzing input structure

 e.g. sparse matrix computations, data mining

 Semi-static (periodic repartitioning)
 Characteristics change but slowly; e.g. Barnes-Hut

 Static or semi-static, with dynamic task stealing
 Initial decomposition, but highly unpredictable; e.g. ray tracing

25

Relation to Load Balance
 Scatter Decomposition, e.g. initial partition in Raytrace

Preserve locality in task stealing
•Steal large tasks for locality, steal from same queues, ...

12

3 4

12

3 4

12

3 4

12

3 4

12

3 4

12

3 4

12

3 4

12

3 4

12

3 4

12

3 4

12

3 4

12

3 4

12

3 4

12

3 4

12

3 4

12

3 4

12

43

Domain decomposition Scatter decomposition

26

Partitioning for Performance

 Balancing the workload and reducing wait time at synch
points

 Reducing inherent communication

 Reducing extra work

27

Reducing Extra Work
 Common sources of extra work

 Computing a good partition
• e.g. partitioning in Barnes-Hut or sparse matrix

 Using redundant computation to avoid communication

 Task, data and process management overhead
• applications, languages, runtime systems, OS

 Imposing structure on communication
• coalescing messages, allowing effective naming

 Architectural Implications
 Reduce need by making communication and orchestration efficient

28

Outline

 Components of execution time as seen by processor

 Partitioning for performance

 Relationship of communication, data locality and

architecture

 Orchestration for performance

29

Limitations of Algorithm Analysis
 Inherent communication in parallel algorithm is not all

 artifactual communication caused by program implementation and
architectural interactions can even dominate

 thus, amount of communication not dealt with adequately

 Cost of communication determined not only by amount
 also how communication is structured

 and cost of communication in system

 Both architecture-dependent, and addressed in orchestration
step

 To understand techniques, first look at system interactions

30

What is a Multiprocessor?
 A collection of communicating processors

 View taken so far

 Goals: balance load, reduce inherent communication and extra work

 A multi-cache, multi-memory system
 Role of these components essential regardless of programming model

 Programming model and communication abstraction affect specific
performance tradeoffs

 Most of remaining performance issues focus on second
aspect

31

Memory-Oriented View
 Multiprocessor as extended memory hierarchy

 as seen by a given processor

 Levels in extended hierarchy
 Registers, caches, local memory, remote memory (topology)

 Glued together by communication architecture

 Levels communicate at a certain granularity of data transfer

 Need to exploit spatial and temporal locality in hierarchy
 Otherwise extra communication may also be caused

 Especially important since communication is expensive

32

Extended Hierarchy
 Idealized view: local cache hierarchy + single main memory

 But reality is more complex
 Centralized Memory: caches of other processors

 Distributed Memory: some local, some remote; + network topology

 Management of levels
• caches managed by hardware

• main memory depends on programming model
 SAS: data movement between local and remote transparent

 message passing: explicit

 Levels closer to processor are lower latency and higher bandwidth

 Improve performance through architecture or program locality

 Tradeoff with parallelism; need good node performance and
parallelism

33

Artifactual Communication in Extended Hierarchy

 Accesses not satisfied in local portion cause communication
 Inherent communication, implicit or explicit, causes transfers

• determined by program

 Artifactual communication
• determined by program implementation and architecture interactions
• poor allocation of data across distributed memories
• unnecessary data in a transfer
• unnecessary transfers due to system granularities
• redundant communication of data
• finite replication capacity (in cache or main memory)

 Inherent communication assumes unlimited capacity, small
transfers, perfect knowledge of what is needed

34

Outline
 Components of execution time as seen by processor

 Partitioning for performance

 Relationship of communication, data locality and

architecture

 Orchestration for performance

35

Orchestration for Performance
 Reducing amount of communication
 Artifactual: exploit spatial, temporal locality in extended hierarchy

 Inherent: change logical data sharing patterns in algorithm

 Structuring communication to reduce cost

 Let’s examine techniques for both

36

Reducing Artifactual Communication

 Message passing model

 Communication and replication are both explicit

 Even artifactual communication is in explicit messages

 Shared address space model

 More interesting from an architectural perspective

 Occurs transparently due to interactions of program and system
• sizes and granularities in extended memory hierarchy

 Use shared address space to illustrate issues

37

Exploiting Temporal Locality
 Structure algorithm so that working sets map well to hierarchy

 often techniques to reduce inherent communication do well here
 schedule tasks for data reuse once assigned

 Multiple data structures in same phase
 e.g. database records: local versus remote

 Solver example: blocking

 More useful when O(nk+1) computation on O(nk) data
 many linear algebra computations (factorization, matrix multiply)

38

Exploiting Spatial Locality
 Besides capacity, granularities are important

 Granularity of allocation
 Granularity of communication or data transfer
 Granularity of coherence

 Major spatial-related causes of artifactual communication
 Conflict misses
 Data distribution/layout (allocation granularity)
 Fragmentation (communication granularity)
 False sharing of data (coherence granularity)

 All depend on how spatial access patterns interact with data
structures
 Fix problems by modifying data structures, or layout/alignment

 Examine later in context of architectures
 one simple example here: data distribution in SAS solver

39

Spatial Locality Example
 Repeated sweeps over 2-d grid, each time adding 1 to elements

 Natural 2-d versus higher-dimensional array representation

40

Tradeoffs with Inherent Communication
 Partitioning grid solver: blocks versus rows

 Blocks still have a spatial locality problem on remote data

 Rows can perform better despite worse inherent c-to-c ratio

41

Example Performance Impact
 Performance measured on an SGI Origin2000

42

Structuring Communication
 Given amount of communication, goal is to reduce cost
 Cost of communication as seen by process

• f = frequency of messages
• o = overhead per message (at both ends)
• l = network delay per message
• nc= total data sent
• m = number of messages
• B = bandwidth along path (determined by network, NI, assist)
• tc= cost induced by content i on per message
• overlap = amount of latency hidden by overlap with comp. or comm.

 Portion in parentheses is cost of a message (as seen by processor)
 That portion, ignoring overlap, is latency of a message
 Goal: reduce terms in latency and increase overlap

43

Reducing Overhead
 Can reduce # of messages m or overhead per message o

 o is usually determined by hardware or system software
 Program should try to reduce m by coalescing messages

 More control when communication is explicit

 Coalescing data into larger messages

 Easy for regular, coarse-grained communication

 Can be difficult for irregular, naturally fine-grained communication
• may require changes to algorithm and extra work
 coalescing data and determining what and to whom to send

44

Reducing Network Delay
 Network delay component= f * h * th

• h = number of hops traversed in network
• th= link + switch latency per hop

 Reducing f : communicate less, or make messages larger
 Reducing h

 Map communication patterns to network topology
• e.g. nearest-neighbor on mesh and ring; all-to-all

 How important is this?
• used to be major focus of parallel algorithms
• depends on number of processors, how th, compares with other

components
• less important on modern machines
 overheads, processor count, multiprogramming

45

Mapping of Task Communication Patterns to Topology

Task Graph:

T5

T1

T3 T4T2

P0
000

P1
001

P4
100

P5
101

P2
010

P3
011

P6
110

P7
111

Parallel System Topology:
3D Binary Hypercube

T1 runs on P0
T2 runs on P5
T3 runs on P6
T4 runs on P7
T5 runs on P0

Poor Mapping:

• Communication from T1 to T2 requires 2 hops
Route: P0-P1-P5

• Communication from T1 to T3 requires 2 hops
Route: P0-P2-P6

• Communication from T1 to T4 requires 3 hops
Route: P0-P1-P3-P7

• Communication from T2, T3, T4 to T5
• similar routes to above reversed (2-3 hops)

Better Mapping: T1 runs on P0
T2 runs on P1
T3 runs on P2
T4 runs on P4
T5 runs on P0

• Communication between any two
communicating (dependant) tasks
requires just 1 hop

46

Reducing Contention
 All resources have nonzero occupancy

 Memory, communication controller, network link, etc.

 Can only handle so many transactions per unit time

 Effects of contention
 Increased end-to-end cost for messages

 Reduced available bandwidth for individual messages

 Causes imbalances across processors

 Particularly insidious performance problem
 Easy to ignore when programming

 Slow down messages that don’t even need that resource
• by causing other dependent resources to also congest

 Effect can be devastating: Don’t flood a resource!

47

Types of Contention
 Network contention and end-point contention (hot-spots)

 Location and Module hot-spots

 Location: e.g. accumulating into global variable barrier
 solution: tree-structured communication

 In general, reduce burstiness; may conflict with making messages

 Module: all-to-all personalized comm. in matrix transpose
 solution: stagger access by different processors to same node

temporally

48

Overlapping Communication
 Cannot afford to stall for high latencies

 even on uniprocessors!

 Overlap with computation or communication to hide latency

 Requires extra concurrency (slackness), higher bandwidth

 Techniques
 Prefetching

 Block data transfer

 Proceeding past communication

 Multithreading

49

Summary of Tradeoffs
 Different goals often have conflicting demands
 Load Balance

• fine-grain tasks
• random or dynamic assignment

 Communication
• usually coarse grain tasks
• decompose to obtain locality: not random/dynamic

 Extra Work
• coarse grain tasks
• simple assignment

 Communication Cost
• big transfers: amortize overhead and latency
• small transfers: reduce contention

50

Relationship between Perspectives

51

Summary

 Goal is to reduce denominator components

 Both programmer and system have role to play

 Architecture cannot do much about load imbalance or too
much communication

 But it can
 reduce incentive for creating ill-behaved programs (efficient naming,

communication and synchronization)

 reduce artifactual communication

 provide efficient naming for flexible assignment

 allow effective overlapping of communication

52

References
 The content expressed in this chapter comes from
 Carnegie Mellon University’s public course, Parallel Computer

Architecture and Programming, (CS 418)
(http://www.cs.cmu.edu/afs/cs/academic/class/15418-
s11/public/lectures/)

	Parallel Programming Principle and Practice�Lecture 5 — Parallel Programming: Performance
	Outline
	Processor-Centric Perspective
	Outline
	Partitioning for Performance
	Load Balance and Synch Wait Time
	Identifying Concurrency
	Identifying Concurrency
	Identifying Concurrency
	Load Balance and Synch Wait Time
	Decide How to Manage Concurrency
	Dynamic Assignment
	Dynamic Tasking with Task Queues
	Impact of Dynamic Assignment
	Load Balance and Synch Wait Time
	Determining Task Granularity
	Load Balance and Synch Wait Time
	Reducing Serialization
	Partitioning for Performance
	Reducing Inherent Communication
	Implications of Communication-to-Computation Ratio
	Domain Decomposition
	Domain Decomposition
	Finding a Domain Decomposition
	Relation to Load Balance
	Partitioning for Performance
	Reducing Extra Work
	Outline
	Limitations of Algorithm Analysis
	What is a Multiprocessor?
	Memory-Oriented View
	Extended Hierarchy
	Artifactual Communication in Extended Hierarchy
	Outline
	Orchestration for Performance
	Reducing Artifactual Communication
	Exploiting Temporal Locality
	Exploiting Spatial Locality
	Spatial Locality Example
	Tradeoffs with Inherent Communication
	Example Performance Impact
	Structuring Communication
	Reducing Overhead
	Reducing Network Delay
	Mapping of Task Communication Patterns to Topology
	Reducing Contention
	Types of Contention
	Overlapping Communication
	Summary of Tradeoffs
	Relationship between Perspectives
	Summary
	References

