
Parallel Programming Principle and Practice

Lecture 5 — Parallel Programming: Performance

Jin, Hai

School of Computer Science and Technology

Huazhong University of Science and Technology

2

Outline
 Components of execution time as seen by processor

 Partitioning for performance

 Relationship of communication, data locality and

architecture

 Orchestration for performance

3

Processor-Centric Perspective

4

Outline

 Components of execution time as seen by processor

 Partitioning for performance

 Relationship of communication, data locality and architecture

 Orchestration for performance

5

Partitioning for Performance

 Balancing the workload and reducing wait time at synch
points

 Reducing inherent communication

 Reducing extra work

6

Load Balance and Synch Wait Time

 Limit on speedup: Speedupproblem(p) <

 Work includes data access and other costs

 Not just equal work, but must be busy at same time

 Four parts to load balance and reducing synch wait time
 Identify enough concurrency

 Decide how to manage it

 Determine the granularity at which to exploit it

 Reduce serialization and cost of synchronization

7

Identifying Concurrency
 Techniques seen for equation solver

 Loop structure, fundamental dependences, new algorithms

 Data Parallelism versus Function Parallelism
 Often see orthogonal levels of parallelism; e.g. VLSI routing

8

Identifying Concurrency
 Function parallelism

 entire large tasks (procedures) that can be done in parallel

on same or different data
 e.g. different independent grid computations in Ocean

e.g. pipelining, as in video encoding /decoding, or polygon rendering

 degree usually modest and does not grow with input size

 difficult to load balance

 often used to reduce synch between data parallel phases

9

Identifying Concurrency
 Most scalable programs data parallel

 Data parallelism
 Similar parallel operation sequences performed on elements of large

data structures
• e.g ocean equation solver, pixel-level image processing

 Such as resulting from parallelization of loops

 Usually easy to load balance (e.g ocean equation solver)

 Degree of concurrency usually increase with input or problem size.
e.g O(n2) in equation solver example

10

Load Balance and Synch Wait Time
 Limit on speedup: Speedupproblem(p)

 Work includes data access and other costs

 Not just equal work, but must be busy at same time

 Four parts to load balance and reducing synch wait time
 Identify enough concurrency

 Decide how to manage it

 Determine the granularity at which to exploit it

 Reduce serialization and cost of synchronization

11

Decide How to Manage Concurrency
 Static versus Dynamic techniques

 Static
 Algorithmic assignment based on input; will not change

 Low runtime overhead

 Computation must be predictable

 Preferable when applicable (except in multiprogrammed or
heterogeneous environment)

 Dynamic
 Adapt at runtime to balance load

 Can increase communication and reduce locality

 Can increase task management overheads

12

Dynamic Assignment
 Profile-based (semi-static)

 Profile work distribution at runtime, and repartition dynamically

 Applicable in many computations, e.g. some graphics

 Dynamic Tasking
 Deal with unpredictability in program or environment (e.g. Raytrace)

• computation, communication, and memory system interactions

• multiprogramming and heterogeneity

• used by runtime systems and OS too

 Pool of tasks; take and add tasks until done

 e.g. “self-scheduling” of loop iterations (shared loop counter)

13

Dynamic Tasking with Task Queues
 Centralized versus distributed queues
 Task stealing with distributed queues

 Can compromise communication and locality, and increase synchronization
 Whom to steal from, how many tasks to steal, ...
 Termination detection
 Maximum imbalance related to size of task

14

Impact of Dynamic Assignment
 On SGI Origin 2000 (cache-coherent shared memory)

15

Load Balance and Synch Wait Time
 Limit on speedup: Speedupproblem(p)

 Work includes data access and other costs

 Not just equal work, but must be busy at same time

 Four parts to load balance and reducing synch wait time
 Identify enough concurrency

 Decide how to manage it

 Determine the granularity at which to exploit it

 Reduce serialization and cost of synchronization

16

Determining Task Granularity
 Task granularity: amount of work associated with a task

 General rule
 Coarse-grained => often less load balance

 Fine-grained=> more overhead; often more communication &
contention

 Communication & contention actually affected by assignment,
not size
 Overhead by size itself too, particularly with task queues

17

Load Balance and Synch Wait Time
 Limit on speedup: Speedupproblem(p)

 Work includes data access and other costs

 Not just equal work, but must be busy at same time

 Four parts to load balance and reducing synch wait time
 Identify enough concurrency

 Decide how to manage it

 Determine the granularity at which to exploit it

 Reduce serialization and cost of synchronization

18

Reducing Serialization
 Careful about assignment and orchestration (including scheduling)
 Event synchronization

 Reduce use of conservative synchronization
• e.g. point-to-point instead of barriers, or granularity of pt-to-pt

 But fine-grained synch more difficult to program, more synch ops.
 Mutual exclusion

 Separate locks for separate data
• e.g. locking records in a database: lock per process, record, or field
• lock per task in task queue, not per queue
• finer grain => less contention/serialization, more space, less reuse

 Smaller, less frequent critical sections
• Do not do reading/testing in critical section, only modification
• e.g. searching for task to dequeue in task queue, building tree

 Stagger critical sections in time

19

Partitioning for Performance

 Balancing the workload and reducing wait time at synch
points

 Reducing inherent communication

 Reducing extra work

20

Reducing Inherent Communication
 Communication is expensive!

 Measure: communication to computation ratio

 Focus here on inherent communication
 Determined by assignment of tasks to processes

 Later see that actual communication can be greater

 Assign tasks that access same data to same process

 Solving communication and load balance NP-hard in general
case

 But simple heuristic solutions work well in practice
 Applications have structure

21

Implications of Communication-to-Computation Ratio

 If denominator is execution time, ratio gives average
bandwidth needs

 If denominator is operation count, gives extremes in impact of
latency and bandwidth
 Latency: assume no latency hiding

 Bandwidth: assume all latency hidden

 Reality is somewhere in between

 Actual impact of communication depends on structure & cost
as well

 Need to keep communication balanced across processors as well

22

Domain Decomposition
 Works well for scientific, engineering, graphics, …applications
 Exploits local-biased nature of physical problems

 Information requirements often short-range
Or long-range but fall off with distance

 Simple example: nearest-neighbor grid computation

 Depends on n,p : decreases with n, increases with p

23

Domain Decomposition
 Best domain decomposition depends on information requirements

 Nearest neighbor example: block versus strip decomposition

 Comm to comp: for block, for strip
 Retain block from here on

 Application dependent: strip may be better in other cases
 E.g. particle flow in tunnel

24

Finding a Domain Decomposition
 Static, by inspection

 Must be predictable: grid example above, and Ocean

 Static, but not by inspection
 Input-dependent, require analyzing input structure

 e.g. sparse matrix computations, data mining

 Semi-static (periodic repartitioning)
 Characteristics change but slowly; e.g. Barnes-Hut

 Static or semi-static, with dynamic task stealing
 Initial decomposition, but highly unpredictable; e.g. ray tracing

25

Relation to Load Balance
 Scatter Decomposition, e.g. initial partition in Raytrace

Preserve locality in task stealing
•Steal large tasks for locality, steal from same queues, ...

12

3 4

12

3 4

12

3 4

12

3 4

12

3 4

12

3 4

12

3 4

12

3 4

12

3 4

12

3 4

12

3 4

12

3 4

12

3 4

12

3 4

12

3 4

12

3 4

12

43

Domain decomposition Scatter decomposition

26

Partitioning for Performance

 Balancing the workload and reducing wait time at synch
points

 Reducing inherent communication

 Reducing extra work

27

Reducing Extra Work
 Common sources of extra work

 Computing a good partition
• e.g. partitioning in Barnes-Hut or sparse matrix

 Using redundant computation to avoid communication

 Task, data and process management overhead
• applications, languages, runtime systems, OS

 Imposing structure on communication
• coalescing messages, allowing effective naming

 Architectural Implications
 Reduce need by making communication and orchestration efficient

28

Outline

 Components of execution time as seen by processor

 Partitioning for performance

 Relationship of communication, data locality and

architecture

 Orchestration for performance

29

Limitations of Algorithm Analysis
 Inherent communication in parallel algorithm is not all

 artifactual communication caused by program implementation and
architectural interactions can even dominate

 thus, amount of communication not dealt with adequately

 Cost of communication determined not only by amount
 also how communication is structured

 and cost of communication in system

 Both architecture-dependent, and addressed in orchestration
step

 To understand techniques, first look at system interactions

30

What is a Multiprocessor?
 A collection of communicating processors

 View taken so far

 Goals: balance load, reduce inherent communication and extra work

 A multi-cache, multi-memory system
 Role of these components essential regardless of programming model

 Programming model and communication abstraction affect specific
performance tradeoffs

 Most of remaining performance issues focus on second
aspect

31

Memory-Oriented View
 Multiprocessor as extended memory hierarchy

 as seen by a given processor

 Levels in extended hierarchy
 Registers, caches, local memory, remote memory (topology)

 Glued together by communication architecture

 Levels communicate at a certain granularity of data transfer

 Need to exploit spatial and temporal locality in hierarchy
 Otherwise extra communication may also be caused

 Especially important since communication is expensive

32

Extended Hierarchy
 Idealized view: local cache hierarchy + single main memory

 But reality is more complex
 Centralized Memory: caches of other processors

 Distributed Memory: some local, some remote; + network topology

 Management of levels
• caches managed by hardware

• main memory depends on programming model
 SAS: data movement between local and remote transparent

 message passing: explicit

 Levels closer to processor are lower latency and higher bandwidth

 Improve performance through architecture or program locality

 Tradeoff with parallelism; need good node performance and
parallelism

33

Artifactual Communication in Extended Hierarchy

 Accesses not satisfied in local portion cause communication
 Inherent communication, implicit or explicit, causes transfers

• determined by program

 Artifactual communication
• determined by program implementation and architecture interactions
• poor allocation of data across distributed memories
• unnecessary data in a transfer
• unnecessary transfers due to system granularities
• redundant communication of data
• finite replication capacity (in cache or main memory)

 Inherent communication assumes unlimited capacity, small
transfers, perfect knowledge of what is needed

34

Outline
 Components of execution time as seen by processor

 Partitioning for performance

 Relationship of communication, data locality and

architecture

 Orchestration for performance

35

Orchestration for Performance
 Reducing amount of communication
 Artifactual: exploit spatial, temporal locality in extended hierarchy

 Inherent: change logical data sharing patterns in algorithm

 Structuring communication to reduce cost

 Let’s examine techniques for both

36

Reducing Artifactual Communication

 Message passing model

 Communication and replication are both explicit

 Even artifactual communication is in explicit messages

 Shared address space model

 More interesting from an architectural perspective

 Occurs transparently due to interactions of program and system
• sizes and granularities in extended memory hierarchy

 Use shared address space to illustrate issues

37

Exploiting Temporal Locality
 Structure algorithm so that working sets map well to hierarchy

 often techniques to reduce inherent communication do well here
 schedule tasks for data reuse once assigned

 Multiple data structures in same phase
 e.g. database records: local versus remote

 Solver example: blocking

 More useful when O(nk+1) computation on O(nk) data
 many linear algebra computations (factorization, matrix multiply)

38

Exploiting Spatial Locality
 Besides capacity, granularities are important

 Granularity of allocation
 Granularity of communication or data transfer
 Granularity of coherence

 Major spatial-related causes of artifactual communication
 Conflict misses
 Data distribution/layout (allocation granularity)
 Fragmentation (communication granularity)
 False sharing of data (coherence granularity)

 All depend on how spatial access patterns interact with data
structures
 Fix problems by modifying data structures, or layout/alignment

 Examine later in context of architectures
 one simple example here: data distribution in SAS solver

39

Spatial Locality Example
 Repeated sweeps over 2-d grid, each time adding 1 to elements

 Natural 2-d versus higher-dimensional array representation

40

Tradeoffs with Inherent Communication
 Partitioning grid solver: blocks versus rows

 Blocks still have a spatial locality problem on remote data

 Rows can perform better despite worse inherent c-to-c ratio

41

Example Performance Impact
 Performance measured on an SGI Origin2000

42

Structuring Communication
 Given amount of communication, goal is to reduce cost
 Cost of communication as seen by process

• f = frequency of messages
• o = overhead per message (at both ends)
• l = network delay per message
• nc= total data sent
• m = number of messages
• B = bandwidth along path (determined by network, NI, assist)
• tc= cost induced by content i on per message
• overlap = amount of latency hidden by overlap with comp. or comm.

 Portion in parentheses is cost of a message (as seen by processor)
 That portion, ignoring overlap, is latency of a message
 Goal: reduce terms in latency and increase overlap

43

Reducing Overhead
 Can reduce # of messages m or overhead per message o

 o is usually determined by hardware or system software
 Program should try to reduce m by coalescing messages

 More control when communication is explicit

 Coalescing data into larger messages

 Easy for regular, coarse-grained communication

 Can be difficult for irregular, naturally fine-grained communication
• may require changes to algorithm and extra work
 coalescing data and determining what and to whom to send

44

Reducing Network Delay
 Network delay component= f * h * th

• h = number of hops traversed in network
• th= link + switch latency per hop

 Reducing f : communicate less, or make messages larger
 Reducing h

 Map communication patterns to network topology
• e.g. nearest-neighbor on mesh and ring; all-to-all

 How important is this?
• used to be major focus of parallel algorithms
• depends on number of processors, how th, compares with other

components
• less important on modern machines
 overheads, processor count, multiprogramming

45

Mapping of Task Communication Patterns to Topology

Task Graph:

T5

T1

T3 T4T2

P0
000

P1
001

P4
100

P5
101

P2
010

P3
011

P6
110

P7
111

Parallel System Topology:
3D Binary Hypercube

T1 runs on P0
T2 runs on P5
T3 runs on P6
T4 runs on P7
T5 runs on P0

Poor Mapping:

• Communication from T1 to T2 requires 2 hops
Route: P0-P1-P5

• Communication from T1 to T3 requires 2 hops
Route: P0-P2-P6

• Communication from T1 to T4 requires 3 hops
Route: P0-P1-P3-P7

• Communication from T2, T3, T4 to T5
• similar routes to above reversed (2-3 hops)

Better Mapping: T1 runs on P0
T2 runs on P1
T3 runs on P2
T4 runs on P4
T5 runs on P0

• Communication between any two
communicating (dependant) tasks
requires just 1 hop

46

Reducing Contention
 All resources have nonzero occupancy

 Memory, communication controller, network link, etc.

 Can only handle so many transactions per unit time

 Effects of contention
 Increased end-to-end cost for messages

 Reduced available bandwidth for individual messages

 Causes imbalances across processors

 Particularly insidious performance problem
 Easy to ignore when programming

 Slow down messages that don’t even need that resource
• by causing other dependent resources to also congest

 Effect can be devastating: Don’t flood a resource!

47

Types of Contention
 Network contention and end-point contention (hot-spots)

 Location and Module hot-spots

 Location: e.g. accumulating into global variable barrier
 solution: tree-structured communication

 In general, reduce burstiness; may conflict with making messages

 Module: all-to-all personalized comm. in matrix transpose
 solution: stagger access by different processors to same node

temporally

48

Overlapping Communication
 Cannot afford to stall for high latencies

 even on uniprocessors!

 Overlap with computation or communication to hide latency

 Requires extra concurrency (slackness), higher bandwidth

 Techniques
 Prefetching

 Block data transfer

 Proceeding past communication

 Multithreading

49

Summary of Tradeoffs
 Different goals often have conflicting demands
 Load Balance

• fine-grain tasks
• random or dynamic assignment

 Communication
• usually coarse grain tasks
• decompose to obtain locality: not random/dynamic

 Extra Work
• coarse grain tasks
• simple assignment

 Communication Cost
• big transfers: amortize overhead and latency
• small transfers: reduce contention

50

Relationship between Perspectives

51

Summary

 Goal is to reduce denominator components

 Both programmer and system have role to play

 Architecture cannot do much about load imbalance or too
much communication

 But it can
 reduce incentive for creating ill-behaved programs (efficient naming,

communication and synchronization)

 reduce artifactual communication

 provide efficient naming for flexible assignment

 allow effective overlapping of communication

52

References
 The content expressed in this chapter comes from
 Carnegie Mellon University’s public course, Parallel Computer

Architecture and Programming, (CS 418)
(http://www.cs.cmu.edu/afs/cs/academic/class/15418-
s11/public/lectures/)

	Parallel Programming Principle and Practice�Lecture 5 — Parallel Programming: Performance
	Outline
	Processor-Centric Perspective
	Outline
	Partitioning for Performance
	Load Balance and Synch Wait Time
	Identifying Concurrency
	Identifying Concurrency
	Identifying Concurrency
	Load Balance and Synch Wait Time
	Decide How to Manage Concurrency
	Dynamic Assignment
	Dynamic Tasking with Task Queues
	Impact of Dynamic Assignment
	Load Balance and Synch Wait Time
	Determining Task Granularity
	Load Balance and Synch Wait Time
	Reducing Serialization
	Partitioning for Performance
	Reducing Inherent Communication
	Implications of Communication-to-Computation Ratio
	Domain Decomposition
	Domain Decomposition
	Finding a Domain Decomposition
	Relation to Load Balance
	Partitioning for Performance
	Reducing Extra Work
	Outline
	Limitations of Algorithm Analysis
	What is a Multiprocessor?
	Memory-Oriented View
	Extended Hierarchy
	Artifactual Communication in Extended Hierarchy
	Outline
	Orchestration for Performance
	Reducing Artifactual Communication
	Exploiting Temporal Locality
	Exploiting Spatial Locality
	Spatial Locality Example
	Tradeoffs with Inherent Communication
	Example Performance Impact
	Structuring Communication
	Reducing Overhead
	Reducing Network Delay
	Mapping of Task Communication Patterns to Topology
	Reducing Contention
	Types of Contention
	Overlapping Communication
	Summary of Tradeoffs
	Relationship between Perspectives
	Summary
	References

