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Outline
 Components of execution time as seen by processor

 Partitioning for performance

 Relationship of communication, data locality and 
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 Orchestration for performance
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Processor-Centric Perspective



4

Outline

 Components of execution time as seen by processor

 Partitioning for performance

 Relationship of communication, data locality and architecture

 Orchestration for performance



5

Partitioning for Performance

 Balancing the workload and reducing wait time at synch 
points

 Reducing inherent communication

 Reducing extra work
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Load Balance and Synch Wait Time

 Limit on speedup:  Speedupproblem(p) <  

 Work includes data access and other costs

 Not just equal work, but must be busy at same time

 Four parts to load balance and reducing synch wait time
 Identify enough concurrency

 Decide how to manage it

 Determine the granularity at which to exploit it

 Reduce serialization and cost of synchronization
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Identifying Concurrency
 Techniques seen for equation solver

 Loop structure, fundamental dependences, new algorithms

 Data Parallelism versus Function Parallelism
 Often see orthogonal levels of parallelism; e.g. VLSI routing
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Identifying Concurrency
 Function parallelism

 entire large tasks (procedures)  that can be done in parallel

on same or different data
 e.g. different independent grid computations in Ocean

e.g. pipelining, as in video encoding /decoding, or polygon rendering

 degree usually modest and does not grow with input size

 difficult to load balance

 often used to reduce synch between data parallel phases
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Identifying Concurrency
 Most scalable programs data parallel

 Data parallelism
 Similar parallel operation sequences performed on elements of large 

data structures 
• e.g ocean equation solver, pixel-level image processing

 Such as resulting from parallelization of loops

 Usually easy to load balance (e.g ocean equation solver)

 Degree of concurrency usually increase with input or problem size.  
e.g O(n2) in equation solver example
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Load Balance and Synch Wait Time
 Limit on speedup:  Speedupproblem(p)

 Work includes data access and other costs

 Not just equal work, but must be busy at same time

 Four parts to load balance and reducing synch wait time
 Identify enough concurrency

 Decide how to manage it

 Determine the granularity at which to exploit it

 Reduce serialization and cost of synchronization
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Decide How to Manage Concurrency
 Static versus Dynamic techniques

 Static
 Algorithmic assignment based on input; will not change

 Low runtime overhead

 Computation must be predictable

 Preferable when applicable (except in multiprogrammed or  
heterogeneous environment)

 Dynamic
 Adapt at runtime to balance load

 Can increase communication and reduce locality

 Can increase task management overheads
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Dynamic Assignment
 Profile-based (semi-static)

 Profile work distribution at runtime, and repartition dynamically

 Applicable in many computations, e.g. some graphics

 Dynamic Tasking
 Deal with unpredictability in program or environment (e.g. Raytrace)

• computation, communication, and memory system interactions 

• multiprogramming and heterogeneity

• used by runtime systems and OS too

 Pool of tasks; take and add tasks until done

 e.g. “self-scheduling” of loop iterations (shared loop counter)
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Dynamic Tasking with Task Queues
 Centralized versus distributed queues
 Task stealing with distributed  queues 

 Can compromise communication and locality, and increase synchronization
 Whom to steal from, how many tasks to steal, ...
 Termination detection
 Maximum imbalance related to size of task
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Impact of Dynamic Assignment
 On SGI Origin 2000 (cache-coherent shared memory)
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Load Balance and Synch Wait Time
 Limit on speedup:  Speedupproblem(p)

 Work includes data access and other costs

 Not just equal work, but must be busy at same time

 Four parts to load balance and reducing synch wait time
 Identify enough concurrency

 Decide how to manage it

 Determine the granularity at which to exploit it

 Reduce serialization and cost of synchronization
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Determining Task Granularity
 Task granularity: amount of work associated with a task

 General rule
 Coarse-grained => often less load balance

 Fine-grained=>  more overhead; often  more communication & 
contention

 Communication & contention actually affected by assignment,
not size
 Overhead by size itself too, particularly with task queues
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Load Balance and Synch Wait Time
 Limit on speedup:  Speedupproblem(p)

 Work includes data access and other costs

 Not just equal work, but must be busy at same time

 Four parts to load balance and reducing synch wait time
 Identify enough concurrency

 Decide how to manage it

 Determine the granularity at which to exploit it

 Reduce serialization and cost of synchronization
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Reducing Serialization
 Careful about assignment and orchestration (including scheduling)
 Event synchronization

 Reduce use of conservative synchronization
• e.g. point-to-point instead of barriers, or granularity of pt-to-pt

 But fine-grained synch more difficult to program, more synch ops. 
 Mutual exclusion

 Separate locks for separate data
• e.g. locking records in a database: lock per process, record, or field
• lock per task in task queue, not per queue
• finer grain => less contention/serialization, more space, less reuse

 Smaller, less frequent critical sections
• Do not do reading/testing in critical section, only modification
• e.g. searching for task to dequeue in task queue, building tree

 Stagger critical sections in time
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Partitioning for Performance

 Balancing the workload and reducing wait time at synch 
points

 Reducing inherent communication

 Reducing extra work



20

Reducing Inherent Communication
 Communication is expensive! 

 Measure: communication to computation ratio

 Focus here on inherent communication
 Determined by assignment of tasks to processes

 Later see that actual communication can be greater

 Assign tasks that access same data to same process

 Solving communication and load balance NP-hard in general 
case

 But simple heuristic solutions work well in practice
 Applications have structure
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Implications of Communication-to-Computation Ratio

 If denominator is execution time, ratio gives average 
bandwidth needs

 If denominator is operation count, gives extremes in impact of 
latency and bandwidth
 Latency: assume no latency hiding

 Bandwidth: assume all latency hidden

 Reality is somewhere in between

 Actual impact of communication depends on structure & cost 
as well

 Need to keep communication balanced across processors as well
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Domain Decomposition
 Works well for scientific, engineering, graphics, …applications
 Exploits local-biased nature of physical problems

 Information requirements often short-range
Or long-range but fall off with distance

 Simple example: nearest-neighbor grid computation

 Depends on n,p : decreases with n, increases with  p
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Domain Decomposition
 Best domain decomposition depends on information requirements

 Nearest neighbor example: block versus strip decomposition

 Comm to comp:           for  block,        for  strip
 Retain block from here on 

 Application dependent: strip may be better in other cases
 E.g. particle flow in tunnel
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Finding a Domain Decomposition
 Static, by inspection

 Must be predictable: grid example above, and Ocean

 Static, but not by inspection
 Input-dependent, require analyzing input structure

 e.g. sparse matrix computations, data mining

 Semi-static (periodic repartitioning)
 Characteristics change but slowly; e.g. Barnes-Hut

 Static or semi-static, with dynamic task stealing
 Initial decomposition, but highly unpredictable;  e.g. ray tracing



25

Relation to Load Balance
 Scatter Decomposition, e.g. initial partition in Raytrace

Preserve locality in task stealing
•Steal large tasks for locality, steal from same queues, ...
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Partitioning for Performance

 Balancing the workload and reducing wait time at synch 
points

 Reducing inherent communication

 Reducing extra work
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Reducing Extra Work
 Common sources of extra work

 Computing a good partition
• e.g. partitioning in Barnes-Hut or sparse matrix

 Using redundant computation to avoid communication

 Task, data and process management overhead
• applications, languages, runtime systems, OS

 Imposing structure on communication
• coalescing messages, allowing effective naming

 Architectural Implications
 Reduce need by making communication and orchestration efficient
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Outline

 Components of execution time as seen by processor

 Partitioning for performance
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architecture
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Limitations of Algorithm Analysis
 Inherent communication in parallel algorithm is not all

 artifactual communication caused by program implementation and 
architectural interactions can even dominate

 thus, amount of communication not dealt with adequately

 Cost of communication determined not only by amount
 also how communication is structured

 and cost of communication in system

 Both architecture-dependent, and addressed in orchestration 
step

 To understand techniques, first look at system interactions
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What is a Multiprocessor?
 A collection of communicating processors

 View taken so far

 Goals: balance load, reduce inherent communication and extra work

 A multi-cache, multi-memory system
 Role of these components essential regardless of programming model

 Programming model and communication abstraction affect specific 
performance tradeoffs

 Most of remaining performance issues focus on second 
aspect



31

Memory-Oriented View
 Multiprocessor as extended memory hierarchy

 as seen by a given processor

 Levels in extended hierarchy
 Registers, caches, local memory, remote memory (topology)

 Glued together by communication architecture

 Levels communicate at a certain granularity of data transfer

 Need to exploit spatial and temporal locality in hierarchy
 Otherwise extra communication may also be caused

 Especially important since communication is expensive
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Extended Hierarchy
 Idealized view: local cache hierarchy + single main memory

 But reality is more complex 
 Centralized Memory: caches of other processors

 Distributed Memory: some local, some remote; + network topology

 Management of levels
• caches managed by hardware

• main memory depends on programming model
 SAS: data movement between local and remote transparent

 message passing: explicit

 Levels closer to processor are lower latency and higher bandwidth

 Improve performance through architecture or program locality

 Tradeoff with parallelism; need good node performance and 
parallelism
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Artifactual Communication in Extended Hierarchy

 Accesses not satisfied in local portion cause communication
 Inherent communication, implicit or explicit, causes transfers

• determined by program

 Artifactual communication
• determined by program implementation and architecture interactions
• poor allocation of data across distributed memories
• unnecessary data in a transfer
• unnecessary transfers due to system granularities
• redundant communication of data
• finite replication capacity (in cache or main memory)

 Inherent communication assumes unlimited capacity, small 
transfers, perfect knowledge of what is needed
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Outline
 Components of execution time as seen by processor

 Partitioning for performance

 Relationship of communication, data locality and 

architecture

 Orchestration for performance
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Orchestration for Performance
 Reducing amount of communication
 Artifactual: exploit spatial, temporal locality in extended hierarchy

 Inherent: change logical data sharing patterns in algorithm

 Structuring communication to reduce cost

 Let’s examine techniques for both
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Reducing Artifactual Communication

 Message passing model

 Communication and replication are both explicit

 Even artifactual communication is in explicit messages

 Shared address space model

 More interesting from an architectural perspective

 Occurs transparently due to interactions of program and system
• sizes and granularities in extended memory hierarchy

 Use shared address space to illustrate issues



37

Exploiting Temporal Locality
 Structure algorithm so that working sets map well to hierarchy

 often techniques to reduce inherent communication do well here
 schedule tasks for data reuse once assigned

 Multiple data structures in same phase
 e.g. database records: local versus remote

 Solver example: blocking

 More useful when O(nk+1) computation on O(nk) data
 many linear algebra computations (factorization, matrix multiply)
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Exploiting Spatial Locality
 Besides capacity, granularities are important

 Granularity of allocation
 Granularity of communication or data transfer
 Granularity of coherence

 Major spatial-related causes of artifactual communication
 Conflict misses
 Data distribution/layout (allocation granularity)
 Fragmentation (communication granularity)
 False sharing of data (coherence granularity)

 All depend on how spatial access patterns interact with data  
structures
 Fix problems by modifying data structures, or layout/alignment

 Examine later in context of architectures
 one simple example here:  data distribution in SAS solver
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Spatial Locality Example
 Repeated sweeps over 2-d grid, each time adding 1 to elements

 Natural 2-d versus higher-dimensional array representation
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Tradeoffs with Inherent Communication
 Partitioning grid solver: blocks versus rows

 Blocks still have a spatial locality problem on remote data

 Rows can perform better despite worse inherent c-to-c ratio
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Example Performance Impact
 Performance measured on an SGI Origin2000
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Structuring Communication
 Given amount of communication, goal is to reduce cost
 Cost of communication as seen by process

• f = frequency of messages
• o = overhead per message (at both ends)
• l = network delay per message
• nc= total data sent
• m = number of messages
• B = bandwidth along path (determined by network, NI, assist)
• tc=  cost induced by content i on per message
• overlap = amount of latency hidden by overlap with comp. or comm.

 Portion in parentheses is cost of a message (as seen by processor)
 That portion, ignoring overlap, is latency of a message
 Goal: reduce terms in latency and increase overlap
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Reducing Overhead
 Can reduce # of messages m or overhead per message o

 o is usually determined by hardware or system software 
 Program should try to reduce m by coalescing messages

 More control when communication is explicit

 Coalescing data into larger messages

 Easy for regular, coarse-grained communication

 Can be difficult for irregular, naturally fine-grained communication
• may require changes to algorithm and extra work 
 coalescing data and determining what and to whom to send
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Reducing Network Delay
 Network delay component= f * h * th

• h = number of hops traversed in network
• th= link + switch latency per hop

 Reducing f : communicate less, or make messages larger
 Reducing h

 Map communication patterns to network topology
• e.g. nearest-neighbor on mesh and ring; all-to-all

 How important is this?
• used to be major focus of parallel algorithms
• depends on number of processors, how th, compares with other 

components
• less important on modern machines
 overheads, processor count, multiprogramming
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Mapping of Task Communication Patterns to Topology

Task Graph:
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Parallel System Topology:
3D Binary Hypercube

T1 runs on P0
T2 runs on P5
T3 runs on P6
T4 runs on P7
T5 runs on P0

Poor Mapping:

• Communication from T1 to T2 requires 2 hops
Route:  P0-P1-P5

• Communication from T1 to T3 requires 2 hops
Route:  P0-P2-P6

• Communication from T1 to T4 requires 3 hops
Route:  P0-P1-P3-P7

• Communication from T2, T3, T4 to T5
• similar routes to above reversed (2-3 hops)

Better Mapping: T1 runs on P0
T2 runs on P1
T3 runs on P2
T4 runs on P4
T5 runs on P0

• Communication between any two
communicating  (dependant)  tasks 
requires just 1 hop
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Reducing Contention
 All resources have nonzero occupancy

 Memory, communication controller, network link, etc.

 Can only handle so many transactions per unit time

 Effects of contention
 Increased end-to-end cost for messages

 Reduced available bandwidth for individual messages

 Causes imbalances across processors

 Particularly insidious performance problem
 Easy to ignore when programming

 Slow down messages that don’t even need that resource
• by causing other dependent resources to also congest

 Effect can be devastating: Don’t flood a resource!
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Types of Contention
 Network contention and end-point contention (hot-spots)

 Location and Module hot-spots

 Location: e.g. accumulating into global variable barrier
 solution: tree-structured communication

 In general, reduce burstiness; may conflict with making messages  

 Module: all-to-all personalized comm. in matrix transpose
 solution: stagger access by different processors to same node 

temporally
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Overlapping Communication
 Cannot afford to stall for high latencies

 even on uniprocessors!

 Overlap with computation or communication to hide latency

 Requires extra concurrency (slackness), higher bandwidth

 Techniques
 Prefetching

 Block data transfer

 Proceeding past communication

 Multithreading
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Summary of Tradeoffs
 Different goals often have conflicting demands
 Load Balance

• fine-grain tasks
• random or dynamic assignment

 Communication
• usually coarse grain tasks
• decompose to obtain locality: not random/dynamic

 Extra Work
• coarse grain tasks
• simple assignment

 Communication Cost
• big transfers: amortize overhead and latency
• small transfers: reduce contention
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Relationship between Perspectives
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Summary

 Goal is to reduce denominator components

 Both programmer and system have role to play

 Architecture cannot do much about load imbalance or too 
much communication

 But it can
 reduce incentive for creating ill-behaved programs (efficient naming,  

communication and synchronization)

 reduce artifactual communication

 provide efficient naming for flexible assignment

 allow effective overlapping of communication
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