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Motivation: Large Scale Data Processing

 Want to process lots of data ( >1TB)

 Want to parallelize across hundreds/thousands of 

CPUs

 … Want to make this easy
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MapReduce

 “A simple and powerful interface that enables 

automatic parallelization and distribution of large-

scale computations, combined with an 

implementation of this interface that achieves high 

performance on large clusters of commodity PCs.”

 More simply, MapReduce is
 A parallel programming model and associated 

implementation

Dean and Ghermawat, “MapReduce: Simplified Data Processing on Large Clusters”, Google Inc.
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Some MapReduce Terminology

 Job – A “full program” - an execution of a Mapper 

and Reducer across a data set

 Task – An execution of a Mapper or a Reducer on a 

slice of data 

 a.k.a. Task-In-Progress (TIP)

 Task Attempt – A particular instance of an attempt to 

execute a task on a machine
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Terminology Example

 Running “Word Count” across 20 files is one job

 20 files to be mapped imply 20 map tasks + some 

number of reduce tasks

 At least 20 map task attempts will be performed… 

more if a machine crashes, etc.
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Task Attempts

 A particular task will be attempted at least once, 

possibly more times if it crashes

 If the same input causes crashes over and over, that input 

will eventually be abandoned

 Multiple attempts at one task may occur in parallel 

with speculative execution turned on

 Task ID from TaskInProgress is not a unique identifier
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MapReduce Programming Model

 Process data using special map() and reduce() 

functions

 The map() function is called on every item in the input and 

emits a series of intermediate key/value pairs

 All values associated with a given key are grouped 

together

 The reduce() function is called on every unique key, and 

its value list, and emits a value that is added to the output



9

map

 Records from the data source (lines out of files, rows 

of a database, etc) are fed into the map function as 

key*value pairs: e.g., (filename, line)

 map() produces one or more intermediate values 

along with an output key from the input

– map  (in_key, in_value) -> 

(out_key, intermediate_value) list
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reduce

 After the map phase is over, all the intermediate 

values for a given output key are combined together 

into a list

 reduce() combines those intermediate values into 

one or more final values for that same output key

– reduce (out_key, intermediate_value list) ->

out_value list



1111

reduce

reduce (out_key, intermediate_value list) ->

out_value list

returned

initial
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MapReduce Architecture
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MapReduce Programming Model
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 More formally,

 Map(k1,v1) --> list(k2,v2)

 Reduce(k2, list(v2)) --> list(v2)
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MapReduce in One Picture

Tom White, Hadoop: The Definitive Guide
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MapReduce Runtime System

1. Partitions input data

2. Schedules execution across a set of machines

3. Handles machine failure

4. Manages interprocess communication
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Parallelism

 map() functions run in parallel, creating different 

intermediate values from different input data sets

 reduce() functions also run in parallel, each working 

on a different output key

 All values are processed independently

 Bottleneck: reduce phase can’t start until map phase 

is completely finished
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Locality

 Master program divides up tasks based on location 

of data: tries to have map() tasks on same machine 

as physical file data, or at least same rack

 map() task inputs are divided into 64 MB blocks: 

same size as Google File System chunks
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Fault Tolerance

 Master detects worker failures

 Re-executes completed & in-progress map() tasks

 Re-executes in-progress reduce() tasks

 Master notices particular input key/values cause 

crashes in map(), and skips those values on re-

execution

 Effect: Can work around bugs in third-party libraries!
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Optimizations

 No reduce can start until map is complete

 A single slow disk controller can rate-limit the whole 

process

 Master redundantly executes “slow-moving” map 

tasks; uses results of first copy to finish

 “Combiner” functions can run on same machine as a 

mapper

 Causes a mini-reduce phase to occur before the real 

reduce phase, to save bandwidth
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Optimizations
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MapReduce Benefits

 Greatly reduces parallel programming complexity

 Reduces synchronization complexity

 Automatically partitions data

 Provides failure transparency

 Handles load balancing
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MapReduce: High Level
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Nodes, Trackers, Tasks

 Master node runs JobTracker instance, which 
accepts Job requests from clients

 TaskTracker instances run on slave nodes

 TaskTracker forks separate Java process for task 
instances
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Typical Problems Solved by MapReduce

 Read a lot of data 

 Map: extract something you care about from each record 

 Shuffle and Sort 

 Reduce: aggregate, summarize, filter, or transform 

 Write the results 

 Outline stays the same, but map and reduce change to fit the 

problem
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MapReduce Examples

 Word frequency

Map

doc

Reduce

<word,3>

<word,1>

<word,1>

<word,1>

Runtime

System

<word,1,1,1>
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Example: Count Word Occurrences
map(String input_key, String input_value):

// input_key: document name 

// input_value: document contents 

for each word w in input_value: 

EmitIntermediate(w, "1"); 

reduce(String output_key, Iterator 
intermediate_values): 

// output_key: a word 

// output_values: a list of counts 

int result = 0; 

for each v in intermediate_values: 

result += ParseInt(v);

Emit(AsString(result)); 
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Example: Count Word Occurrences
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MapReduce Examples

 Distributed grep

 Map function emits <word, line_number> if word matches 

search criteria

 Reduce function is the identity function

 URL access frequency

 Map function processes web logs, emits <url, 1>

 Reduce function sums values and emits <url, total>
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A Brief History

MapReduce is a new use of an old idea in Computer Science

 Map:  Apply a function to every object in a list

 Each object is independent

• Order is unimportant

• Maps can be done in parallel

 The function produces a result

 Reduce:  Combine the results to produce a final result

You may have seen this in a Lisp or functional programming 

course
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MapReduce Execution Overview

1. The user program, via the MapReduce library, 

shards the input data

User

ProgramInput

Data

Shard 0
Shard 1
Shard 2
Shard 3
Shard 4
Shard 5
Shard 6

* Shards are typically 16-64MB in size
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Getting Data To The Mapper

Input file

InputSplit InputSplit InputSplit InputSplit

Input file

RecordReader RecordReader RecordReader RecordReader

Mapper

(intermediates)

Mapper

(intermediates)

Mapper

(intermediates)

Mapper

(intermediates)
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p

u
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o
rm

a
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MapReduce Execution Overview

2. The user program creates process copies 

distributed on a machine cluster. One copy will be 

the “master” and the others will be worker threads

User

Program

Master

Workers
Workers

Workers
Workers

Workers
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MapReduce Execution Overview

3. The master distributes M map and  R reduce tasks 

to idle workers

 M == number of shards

 R == the intermediate key space is divided into R parts

Master
Idle

Worker

Message(Do_map_task)
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Partition and Shuffle

Mapper

(intermediates)

Mapper

(intermediates)

Mapper

(intermediates)

Mapper

(intermediates)

Reducer Reducer Reducer

(intermediates) (intermediates) (intermediates)

Partitioner Partitioner Partitioner Partitioner

s
h

u
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g
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MapReduce Execution Overview

4. Each map-task worker reads assigned input shard 

and outputs intermediate key/value pairs

 Output buffered in RAM

Map

workerShard 0 Key/value pairs
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MapReduce Execution Overview

5. Each worker flushes intermediate values, 

partitioned into R regions, to disk and notifies the 

Master process

Master

Map

worker

Disk locations

Local

Storage
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MapReduce Execution Overview

6. Master process gives disk locations to an available 

reduce-task worker who reads all associated 

intermediate data

Master

Reduce

worker

Disk locations

remote

Storage
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MapReduce Execution Overview

7. Each reduce-task worker sorts its intermediate 

data. Calls the reduce function, passing in unique 

keys and associated key values. Reduce function 

output appended to reduce-task’s partition output 

file

Reduce

worker

Sorts data Partition

Output file
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MapReduce Execution Overview

8. Master process wakes up user process when all 

tasks have completed.  Output contained in R

output files

wakeup User

Program
Master

Output

files
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Writing The Output

Reducer Reducer Reducer

RecordWriter RecordWriter RecordWriter

output file output file output file

O
u
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MapReduce Execution Overview

 Fault Tolerance

 Master process periodically pings workers

• Map-task failure

 Re-execute

 All output was stored locally

• Reduce-task failure

 Only re-execute partially completed tasks

 All output stored in the global file system
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Hadoop

 Open source MapReduce implementation

 http://hadoop.apache.org/core/index.html

Google calls it Hadoop equivalent

MapReduce Hadoop

GFS HDFS

Bigtable HBase

Chubby (nothing yet… but planned)

http://hadoop.apache.org/core/index.html
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HDFS Architecture
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Hadoop Related Projects

 Ambari: A web-based tool for provisioning, managing, and monitoring Apache Hadoop 

clusters which includes support for Hadoop HDFS, Hadoop MapReduce, Hive, 

HCatalog, HBase, ZooKeeper, Oozie, Pig and Sqoop. Ambari also provides a 

dashboard for viewing cluster health such as heat maps and ability to view 

MapReduce, Pig and Hive applications visually along with features to diagnose their 

performance characteristics in a user-friendly manner

 Avro: A data serialization system

 Cassandra: A scalable multi-master database with no single points of failure

 Chukwa: A data collection system for managing large distributed systems

 HBase: A scalable, distributed database that supports structured data storage for large 

tables (NoSQL)

 Hive: A data warehouse infrastructure that provides data summarization and ad hoc 

querying

 Mahout: A Scalable machine learning and data mining library

 Pig: A high-level data-flow language and execution framework for parallel computation

 ZooKeeper: A high-performance coordination service for distributed applications
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