
Parallel Programming Principle and Practice

Lecture 10 —Parallel Computing with MapReduce

Jin, Hai

School of Computer Science and Technology

Huazhong University of Science and Technology

22

Outline

 MapReduce Programming Model

 Typical Problems Solved by MapReduce

 MapReduce Examples

 A Brief History

 MapReduce Execution Overview

 Hadoop

3

Motivation: Large Scale Data Processing

 Want to process lots of data (>1TB)

 Want to parallelize across hundreds/thousands of

CPUs

 … Want to make this easy

4

MapReduce

 “A simple and powerful interface that enables

automatic parallelization and distribution of large-

scale computations, combined with an

implementation of this interface that achieves high

performance on large clusters of commodity PCs.”

 More simply, MapReduce is
 A parallel programming model and associated

implementation

Dean and Ghermawat, “MapReduce: Simplified Data Processing on Large Clusters”, Google Inc.

5

Some MapReduce Terminology

 Job – A “full program” - an execution of a Mapper

and Reducer across a data set

 Task – An execution of a Mapper or a Reducer on a

slice of data

 a.k.a. Task-In-Progress (TIP)

 Task Attempt – A particular instance of an attempt to

execute a task on a machine

6

Terminology Example

 Running “Word Count” across 20 files is one job

 20 files to be mapped imply 20 map tasks + some

number of reduce tasks

 At least 20 map task attempts will be performed…

more if a machine crashes, etc.

7

Task Attempts

 A particular task will be attempted at least once,

possibly more times if it crashes

 If the same input causes crashes over and over, that input

will eventually be abandoned

 Multiple attempts at one task may occur in parallel

with speculative execution turned on

 Task ID from TaskInProgress is not a unique identifier

8

MapReduce Programming Model

 Process data using special map() and reduce()

functions

 The map() function is called on every item in the input and

emits a series of intermediate key/value pairs

 All values associated with a given key are grouped

together

 The reduce() function is called on every unique key, and

its value list, and emits a value that is added to the output

9

map

 Records from the data source (lines out of files, rows

of a database, etc) are fed into the map function as

key*value pairs: e.g., (filename, line)

 map() produces one or more intermediate values

along with an output key from the input

– map (in_key, in_value) ->

(out_key, intermediate_value) list

10

reduce

 After the map phase is over, all the intermediate

values for a given output key are combined together

into a list

 reduce() combines those intermediate values into

one or more final values for that same output key

– reduce (out_key, intermediate_value list) ->

out_value list

1111

reduce

reduce (out_key, intermediate_value list) ->

out_value list

returned

initial

12

MapReduce Architecture

Data store 1 Data store n
map

(key 1,

values...)

(key 2,

values...)
(key 3,

values...)

map

(key 1,

values...)

(key 2,

values...)
(key 3,

values...)

Input key*value

pairs

Input key*value

pairs

== Barrier == : Aggregates intermediate values by output key

reduce reduce reduce

key 1,

intermediate

values

key 2,

intermediate

values

key 3,

intermediate

values

final key 1

values

final key 2

values

final key 3

values

...

13

MapReduce Programming Model

���

How now

Brown cow

How does

It work now

brown 1

cow 1

does 1

How 2

it 1

now 2

work 1

M

M

M

M

���

R

R

<How,1>

<now,1>

<brown,1>

<cow,1>

<How,1>

<does,1>

<it,1>

<work,1>

<now,1>

<How,1 1>

<now,1 1>

<brown,1>

<cow,1>

<does,1>

<it,1>

<work,1>

Input Output

Map

Reduce
MapReduce

Framework

 More formally,

 Map(k1,v1) --> list(k2,v2)

 Reduce(k2, list(v2)) --> list(v2)

14

MapReduce in One Picture

Tom White, Hadoop: The Definitive Guide

15

MapReduce Runtime System

1. Partitions input data

2. Schedules execution across a set of machines

3. Handles machine failure

4. Manages interprocess communication

16

Parallelism

 map() functions run in parallel, creating different

intermediate values from different input data sets

 reduce() functions also run in parallel, each working

on a different output key

 All values are processed independently

 Bottleneck: reduce phase can’t start until map phase

is completely finished

17

Locality

 Master program divides up tasks based on location

of data: tries to have map() tasks on same machine

as physical file data, or at least same rack

 map() task inputs are divided into 64 MB blocks:

same size as Google File System chunks

18

Fault Tolerance

 Master detects worker failures

 Re-executes completed & in-progress map() tasks

 Re-executes in-progress reduce() tasks

 Master notices particular input key/values cause

crashes in map(), and skips those values on re-

execution

 Effect: Can work around bugs in third-party libraries!

19

Optimizations

 No reduce can start until map is complete

 A single slow disk controller can rate-limit the whole

process

 Master redundantly executes “slow-moving” map

tasks; uses results of first copy to finish

 “Combiner” functions can run on same machine as a

mapper

 Causes a mini-reduce phase to occur before the real

reduce phase, to save bandwidth

2020

Optimizations

21

MapReduce Benefits

 Greatly reduces parallel programming complexity

 Reduces synchronization complexity

 Automatically partitions data

 Provides failure transparency

 Handles load balancing

2222

Outline

 MapReduce Programming Model

 Typical Problems Solved by MapReduce

 MapReduce Examples

 A Brief History

 MapReduce Execution Overview

 Hadoop

23

MapReduce: High Level

JobTracker
MapReduce job

submitted by

client computer

Master node

TaskTracker

Slave node

Task instance

TaskTracker

Slave node

Task instance

TaskTracker

Slave node

Task instance

24

Nodes, Trackers, Tasks

 Master node runs JobTracker instance, which
accepts Job requests from clients

 TaskTracker instances run on slave nodes

 TaskTracker forks separate Java process for task
instances

25

Typical Problems Solved by MapReduce

 Read a lot of data

 Map: extract something you care about from each record

 Shuffle and Sort

 Reduce: aggregate, summarize, filter, or transform

 Write the results

 Outline stays the same, but map and reduce change to fit the

problem

2626

Outline

 MapReduce Programming Model

 Typical Problems Solved by MapReduce

 MapReduce Examples

 A Brief History

 MapReduce Execution Overview

 Hadoop

27

MapReduce Examples

 Word frequency

Map

doc

Reduce

<word,3>

<word,1>

<word,1>

<word,1>

Runtime

System

<word,1,1,1>

28

Example: Count Word Occurrences
map(String input_key, String input_value):

// input_key: document name

// input_value: document contents

for each word w in input_value:

EmitIntermediate(w, "1");

reduce(String output_key, Iterator
intermediate_values):

// output_key: a word

// output_values: a list of counts

int result = 0;

for each v in intermediate_values:

result += ParseInt(v);

Emit(AsString(result));

29

Example: Count Word Occurrences

30

MapReduce Examples

 Distributed grep

 Map function emits <word, line_number> if word matches

search criteria

 Reduce function is the identity function

 URL access frequency

 Map function processes web logs, emits <url, 1>

 Reduce function sums values and emits <url, total>

3131

Outline

 MapReduce Programming Model

 Typical Problems Solved by MapReduce

 MapReduce Examples

 A Brief History

 MapReduce Execution Overview

 Hadoop

32

A Brief History

MapReduce is a new use of an old idea in Computer Science

 Map: Apply a function to every object in a list

 Each object is independent

• Order is unimportant

• Maps can be done in parallel

 The function produces a result

 Reduce: Combine the results to produce a final result

You may have seen this in a Lisp or functional programming

course

3333

Outline

 MapReduce Programming Model

 Typical Problems Solved by MapReduce

 MapReduce Examples

 A Brief History

 MapReduce Execution Overview

 Hadoop

34

MapReduce Execution Overview

1. The user program, via the MapReduce library,

shards the input data

User

ProgramInput

Data

Shard 0
Shard 1
Shard 2
Shard 3
Shard 4
Shard 5
Shard 6

* Shards are typically 16-64MB in size

35

Getting Data To The Mapper

Input file

InputSplit InputSplit InputSplit InputSplit

Input file

RecordReader RecordReader RecordReader RecordReader

Mapper

(intermediates)

Mapper

(intermediates)

Mapper

(intermediates)

Mapper

(intermediates)

In
p

u
tF

o
rm

a
t

36

MapReduce Execution Overview

2. The user program creates process copies

distributed on a machine cluster. One copy will be

the “master” and the others will be worker threads

User

Program

Master

Workers
Workers

Workers
Workers

Workers

37

MapReduce Execution Overview

3. The master distributes M map and R reduce tasks

to idle workers

 M == number of shards

 R == the intermediate key space is divided into R parts

Master
Idle

Worker

Message(Do_map_task)

38

Partition and Shuffle

Mapper

(intermediates)

Mapper

(intermediates)

Mapper

(intermediates)

Mapper

(intermediates)

Reducer Reducer Reducer

(intermediates) (intermediates) (intermediates)

Partitioner Partitioner Partitioner Partitioner

s
h

u
ff
lin

g

39

MapReduce Execution Overview

4. Each map-task worker reads assigned input shard

and outputs intermediate key/value pairs

 Output buffered in RAM

Map

workerShard 0 Key/value pairs

40

MapReduce Execution Overview

5. Each worker flushes intermediate values,

partitioned into R regions, to disk and notifies the

Master process

Master

Map

worker

Disk locations

Local

Storage

41

MapReduce Execution Overview

6. Master process gives disk locations to an available

reduce-task worker who reads all associated

intermediate data

Master

Reduce

worker

Disk locations

remote

Storage

42

MapReduce Execution Overview

7. Each reduce-task worker sorts its intermediate

data. Calls the reduce function, passing in unique

keys and associated key values. Reduce function

output appended to reduce-task’s partition output

file

Reduce

worker

Sorts data Partition

Output file

43

MapReduce Execution Overview

8. Master process wakes up user process when all

tasks have completed. Output contained in R

output files

wakeup User

Program
Master

Output

files

44

Writing The Output

Reducer Reducer Reducer

RecordWriter RecordWriter RecordWriter

output file output file output file

O
u

tp
u

tF
o

rm
a

t

45

MapReduce Execution Overview

 Fault Tolerance

 Master process periodically pings workers

• Map-task failure

 Re-execute

 All output was stored locally

• Reduce-task failure

 Only re-execute partially completed tasks

 All output stored in the global file system

4646

Outline

 MapReduce Programming Model

 Typical Problems Solved by MapReduce

 MapReduce Examples

 A Brief History

 MapReduce Execution Overview

 Hadoop

47

Hadoop

 Open source MapReduce implementation

 http://hadoop.apache.org/core/index.html

Google calls it Hadoop equivalent

MapReduce Hadoop

GFS HDFS

Bigtable HBase

Chubby (nothing yet… but planned)

http://hadoop.apache.org/core/index.html

48

HDFS Architecture

49

Hadoop Related Projects

 Ambari: A web-based tool for provisioning, managing, and monitoring Apache Hadoop

clusters which includes support for Hadoop HDFS, Hadoop MapReduce, Hive,

HCatalog, HBase, ZooKeeper, Oozie, Pig and Sqoop. Ambari also provides a

dashboard for viewing cluster health such as heat maps and ability to view

MapReduce, Pig and Hive applications visually along with features to diagnose their

performance characteristics in a user-friendly manner

 Avro: A data serialization system

 Cassandra: A scalable multi-master database with no single points of failure

 Chukwa: A data collection system for managing large distributed systems

 HBase: A scalable, distributed database that supports structured data storage for large

tables (NoSQL)

 Hive: A data warehouse infrastructure that provides data summarization and ad hoc

querying

 Mahout: A Scalable machine learning and data mining library

 Pig: A high-level data-flow language and execution framework for parallel computation

 ZooKeeper: A high-performance coordination service for distributed applications

50

References

 Introduction to Parallel Programming and MapReduce,

Google Code University

 http://code.google.com/edu/parallel/mapreduce-tutorial.html

 Distributed Systems

 http://code.google.com/edu/parallel/index.html

 MapReduce: Simplified Data Processing on Large Clusters

 http://labs.google.com/papers/mapreduce.html

 Hadoop

 http://hadoop.apache.org/core/

http://code.google.com/edu/parallel/mapreduce-tutorial.html
http://code.google.com/edu/parallel/index.html
http://labs.google.com/papers/mapreduce.html
http://labs.google.com/papers/mapreduce.html

