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Evolution of GPU Hardware

 CPU architectures have used Moore’s Law to increase
 The amount of on-chip cache

 The complexity and clock rate of processors

 Single-threaded performance of legacy workloads

 GPU architectures have used Moore’s Law to
 Increase the degree of on-chip parallelism and DRAM bandwidth

 Improve the flexibility and performance of graphics applications

 Accelerate general-purpose Data-Parallel workloads
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Cuda Programming Model Goals

Provide an inherently scalable 

environment for Data-Parallel 

programming across a wide 

range of processors (Nvidia only 

makes GPUs, however)

Make SIMD hardware 

accessible to general-purpose  

programmers. Otherwise, large 

fractions of the available  

execution hardware are wasted!
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Cuda Goals: Scalability

 Cuda expresses many 

independent blocks of 

computation that can be run 

in any order

 Much of the inherent 

scalability of the Cuda 

Programming model stems 

from batched execution of 

"Thread Blocks"

 Between GPUs of the same 

generation, many programs 

achieve linear speedup on 

GPUs with more “Cores”
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Cuda Goals: SIMD Programming

 Hardware architects love 

SIMD, since it permits a very 

space and energy-efficient 

implementation

 However, standard SIMD 

instructions on CPUs are 

inflexible, and difficult to use, 

difficult for a compiler to 

target

 The Cuda Thread abstraction 

will provide programmability 

at the cost of additional 

hardware
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Cuda C Language Extensions
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Cuda Host Runtime Support
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Hello World: Vector Addition
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Hello World: Vector Addition
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Cuda Software Environment

 nvcc compiler works much like icc or gcc: compiles C++ source code, 

generates binary executable

 Nvidia Cuda OS driver manages low-level interaction with device, 

provides API for C++ programs

 Nvidia Cuda SDK has many code samples demonstrating various Cuda 

functionalities

 Library support is continuously growing

 CUBLAS for basic linear algebra

 CUFFT for Fourier Fransforms

 CULapack (3rd party proprietary) linear solvers, eigensolvers, ...

 OS-Portable: Linux, Windows, Mac OS

 A lot of momentum in industrial adoption of Cuda

hkp://developer.nvidia.com/object/cuda_3_1_downloads.html
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Nvidia Cuda GPU Architecture

 The Cuda Programming Model is a set of data-parallel extensions to C, 

amenable to implementation on GPUs, CPUs, FPGAs, ...

 Cuda GPUs are a collection of “Streaming Multiprocessors”

 Each SM is analogous to a core of a Multi-Core CPU

 Each SM is a collection of SIMD executon pipelines (Scalar Processors) 

that share control logic, register file, and L1 Cache
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Cuda Thread Hierarchy

 Parallelism in the Cuda Programming Model is expressed as 

a 4-level Hierarchy
 A Stream is a list of Grids that execute 

in-order. Fermi GPUs execute multiple 

Streams in parallel

 A Grid is a set of up to 232 Thread 

Blocks executing the same kernel

 A Thread Block is a set of up to 1024 

[512 pre-Fermi] Cuda Threads

 Each Cuda Thread is an independent, 

lightweight, scalar execution context

 Groups of 32 threads form Warps that 

execute in lockstep SIMD



15

What is a Cuda Thread?

 Logically, each Cuda Thread is its own very lightweight 

independent MIMD execution context

 Has its own control flow and PC, register file, call stack, ...

 Can access any GPU global memory address at any time

 Identifiable uniquely within a grid by the five integers:

threadIdx.{x,y,z}, blockIdx.{x,y}

 Very fine granularity: do not expect any single thread to do 

a substantial fraction of an expensive computation

 At full occupancy, each Thread has 21 32-bit registers

 ... 1,536 Threads share a 64 KB L1 Cache / __shared__ mem

 GPU has no operand bypassing networks: functional unit latencies 

must be hidden by multithreading or ILP (e.g. from loop unrolling)
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What is a Cuda Warp?

 The Logical SIMD Execution width of the Cuda processor

 A group of 32 Cuda Threads that execute simultaneously

 Execution hardware is most efficiently utilized when all threads in a 

warp execute instructions from the same PC

 If threads in a warp diverge (execute different PCs), then some 

execution pipelines go unused (predication)

 If threads in a warp access aligned, contiguous blocks of DRAM, the 

accesses are coalesced into a single high-bandwidth access

 Identifiable uniquely by dividing the Thread Index by 32

 Technically, warp size could change in future architectures

 But many existing programs would break



17

What is a Cuda Thread Block?
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What is a Cuda Grid?



19

What is a Cuda Stream?

 A sequence of commands (kernel calls, memory transfers) 

that execute in order

 For multiple kernel calls or memory transfers to execute 

concurrently, the application must specify multiple streams

 Concurrent Kernel execution will only happen on Fermi

 On pre-Fermi devices, Memory transfers will execute concurrently 

with Kernels
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Cuda Memory Hierarchy

 Each Cuda Thread has private access to a 

configurable number of registers

 The 128 KB (64 KB) SM register file is 

partitioned among all resident threads

 The Cuda program can trade degree of 

thread block concurrency for amount of per-

thread state

 Registers, stack spill into (cached, on Fermi) 

“local” DRAM if necessary

 Each Thread Block has private access to a 

configurable amount of scratchpad memory

 The Fermi SM’s 64 KB SRAM can be 

configured as 16 KB L1 cache + 48 KB 

scratchpad, or vice-versa*

 Pre-Fermi SM’s have 16 KB scratchpad only

 The available scratchpad space is partitioned 

among resident thread blocks, providing 

another concurrency-state tradeoff

* selected via cudaFuncSetCacheConfig()
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Cuda Memory Hierarchy

 Thread blocks in all Grids share access to a large pool of 

“Global” memory, separate from the Host CPU’s memory.

 Global memory holds the application’s persistent state, while the 

thread-local and block-local memories are temporary

 Global memory is much more expensive than on-chip memories: 

O(100)x latency, O(1/50)x (aggregate) bandwidth

 On Fermi, Global Memory is cached in a 768KB shared L2
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Cuda Memory Hierarchy

 There are other read-only components of the Memory 

Hierarchy that exist due to the Graphics heritage of Cuda

 The 64 KB Cuda Constant Memory resides in the same 

DRAM as global memory, but is accessed via special read-

only 8 KB per-SM caches

 The Cuda Texture Memory also resides in DRAM and is 

accessed via small per-SM read-only caches, but also 

includes interpolation hardware

 This hardware is crucial for graphics performance, but only 

occasionally is useful for general-purpose workloads

 The behaviors of these caches are highly optimized for their 

roles in graphics workloads
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Cuda Memory Hierarchy

 Each Cuda device in the system has its own Global memory, 

separate from the Host CPU memory

 Allocated via cudaMalloc()/cudaFree() and friends

 Host      Device memory transfers are via cudaMemcpy() over 

PCI-E, and are extremely expensive

 microsecond latency, ~GB/s bandwidth

 Multiple Devices managed via multiple CPU threads
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Thread-Block Synchronization
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Using per-block shared memory
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Using Per-Block Shared Memory

 Each SM has 64 KB of private memory, divided 16KB/48KB 

(or 48KB/16KB) into software-managed scratchpad and 

hardware-managed, non-coherent cache

 Pre-Fermi, the SM memory is only 16 KB, and is usable only as 

software-managed scratchpad

 Unless data will be shared between Threads in a block, it 

should reside in registers

 On Fermi, the 128 KB Register file is twice as large, and accessible at 

higher bandwidth and lower latency

 Pre-Fermi, register file is 64 KB and equally fast as scratchpad
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Shared Memory Bank Conflicts

 Shared memory is banked: it consists of 32 (16, pre-Fermi) 

independently addressable 4-byte wide memories

 Addresses interleave: float *p points to a float in bank k, p+1 points to 

a float in bank (k+1) mod 32

 Each bank can satisfy a single 4-byte access per cycle

 A bank conflict occurs when two threads (in the same warp) try to 

access the same bank in a given cycle

 The GPU hardware will execute the two accesses serially, and the 

warp's instruction will take an extra cycle to execute

 Bank conflicts are a second-order performance effect: even 

serialized accesses to on-chip shared memory is faster than 

accesses to off-chip DRAM
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Shared Memory Bank Conflicts

 Figure G-2 from Cuda C 

Programming Gude 3.1

 Unit-Stride access is 

conflict-free 

 Stride-2 access: thread n 

conflicts with thread 16+n

 Stride-3 access is conflict-

free
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Shared Memory Bank Conflicts

 Three more cases of conflict-

free access

 Figure G-3 from Cuda C 

Programming Gude 3.1

 Permuations within a 32-float 

block are OK

 Multiple threads reading the 

same memory address

 All threads reading the same 

memory address is a 

broadcast
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Atomic Memory Operations

 Cuda provides a set of instructions which execute atomically 

with respect to each other

 Allow non-read-only access to variables shared between threads in 

shared or global memory

 Substantially more expensive than standard load/stores

 Wth voluntary consistency, can implement e.g. spin locks!
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Voluntary Memory Consistency

 By default, you cannot assume memory accesses are occur in the same 

order specified by the program

 Although a thread's own accesses appear to that thread to occur in program 

order

 To enforce ordering, use memory fence instructions

 __threadfence_block(): make all previous memory accesses visible to all 

other threads within the thread block

 __threadfence(): make previous global memory accesses visible to all other 

threads on the device

 Frequently must also use the volatile type qualifier

 Has same behavior as CPU C/C++: the compiler is forbidden from register-

promoting values in volatile memory

 Ensures that pointer dereferences produce load/store instructions

 Declared as volatile float *p; *p must produce a memory ref.
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Mapping Cuda to Nvidia GPUs

 Cuda is designed to be "functionally forgiving": Easy to get 

correct programs running. The more time you invest in 

optimizing your code, the more performance you will get

 Speedup is possible with a simple “Homogeneous SPMD” 

approach to writing Cuda programs

 Achieving performance requires an understanding of the 

hardware implementation of Cuda
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Mapping Cuda to Nvidia GPUs
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Mapping Cuda to Nvidia GPUs
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Mapping Cuda to Nvidia GPUs
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Mapping Cuda to Nvidia GPUs
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Mapping Cuda to Nvidia GPUs
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Mapping Cuda to Nvidia GPUs
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Mapping Cuda to Nvidia GPUs
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Mapping Cuda to Nvidia GPUs

 Each level of the GPU's processor hierarchy is associated 

with a memory resource

 Scalar Threads / Warps: Subset of register file

 Thread Block / SM: shared memory (l1 Cache)

 Multiple SMs / Whole GPU: Global DRAM

 Massive multi-threading is used to hide latencies: DRAM 

access, functional unit execution, PCI-E transfers

 A highly performing Cuda program must carefully trade 

resource usage for concurrency

 More registers per thread       fewer threads

 More shared memory ber block        fewer blocks
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Memory, Memory, Memory

 A many core processor ≡ A device for turning a compute 

bound problem into a memory bound problem

 Memory concerns dominate performance tuning!

 Memory is SIMD too! The memory systems of CPUs and 

GPUs alike require memory to be accessed in aligned blocks

 Sparse accesses waste bandwidth!

 Unaligned accesses waste bandwidth!
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Cuda Summary

 The Cuda Programming Model provides a general approach 

to organizing Data Parallel programs for heterogeneous, 

hierarchical platforms

 Currently, the only production-quality implementation is Cuda for 

C/C++ on Nvidia's GPUs

 But Cuda notions of "Scalar Threads", "Warps", "Blocks", and "Grids" 

can be mapped to other platforms as well

 A simple "Homogenous SPMD" approach to Cuda 

programming is useful, especially in early stages of 

implementation and debugging

 But achieving high efficiency requires careful consideration of the 

mapping from computations to processors, data to memories, and 

data access patterns
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