
Parallel Programming Principle and Practice

Lecture 9 — Introduction to GPGPUs and

CUDA Programming Model

Jin, Hai

School of Computer Science and Technology

Huazhong University of Science and Technology

22

Outline

 Introduction to GPGPUs and Cuda Programming Model

 The Cuda Thread Hierarchy

 The Cuda Memory Hierarchy

 Mapping Cuda to Nvidia GPUs

3

Evolution of GPU Hardware

 CPU architectures have used Moore’s Law to increase
 The amount of on-chip cache

 The complexity and clock rate of processors

 Single-threaded performance of legacy workloads

 GPU architectures have used Moore’s Law to
 Increase the degree of on-chip parallelism and DRAM bandwidth

 Improve the flexibility and performance of graphics applications

 Accelerate general-purpose Data-Parallel workloads

4

Cuda Programming Model Goals

Provide an inherently scalable

environment for Data-Parallel

programming across a wide

range of processors (Nvidia only

makes GPUs, however)

Make SIMD hardware

accessible to general-purpose

programmers. Otherwise, large

fractions of the available

execution hardware are wasted!

5

Cuda Goals: Scalability

 Cuda expresses many

independent blocks of

computation that can be run

in any order

 Much of the inherent

scalability of the Cuda

Programming model stems

from batched execution of

"Thread Blocks"

 Between GPUs of the same

generation, many programs

achieve linear speedup on

GPUs with more “Cores”

6

Cuda Goals: SIMD Programming

 Hardware architects love

SIMD, since it permits a very

space and energy-efficient

implementation

 However, standard SIMD

instructions on CPUs are

inflexible, and difficult to use,

difficult for a compiler to

target

 The Cuda Thread abstraction

will provide programmability

at the cost of additional

hardware

7

Cuda C Language Extensions

8

Cuda Host Runtime Support

9

Hello World: Vector Addition

10

Hello World: Vector Addition

11

Cuda Software Environment

 nvcc compiler works much like icc or gcc: compiles C++ source code,

generates binary executable

 Nvidia Cuda OS driver manages low-level interaction with device,

provides API for C++ programs

 Nvidia Cuda SDK has many code samples demonstrating various Cuda

functionalities

 Library support is continuously growing

 CUBLAS for basic linear algebra

 CUFFT for Fourier Fransforms

 CULapack (3rd party proprietary) linear solvers, eigensolvers, ...

 OS-Portable: Linux, Windows, Mac OS

 A lot of momentum in industrial adoption of Cuda

hkp://developer.nvidia.com/object/cuda_3_1_downloads.html

1212

Outline

 Introduction to GPGPUs and Cuda Programming Model

 The Cuda Thread Hierarchy / Memory Hierarchy

 The Cuda Thread Hierarchy

 The Cuda Memory Hierarchy

 Mapping Cuda to Nvidia GPUs

13

Nvidia Cuda GPU Architecture

 The Cuda Programming Model is a set of data-parallel extensions to C,

amenable to implementation on GPUs, CPUs, FPGAs, ...

 Cuda GPUs are a collection of “Streaming Multiprocessors”

 Each SM is analogous to a core of a Multi-Core CPU

 Each SM is a collection of SIMD executon pipelines (Scalar Processors)

that share control logic, register file, and L1 Cache

14

Cuda Thread Hierarchy

 Parallelism in the Cuda Programming Model is expressed as

a 4-level Hierarchy
 A Stream is a list of Grids that execute

in-order. Fermi GPUs execute multiple

Streams in parallel

 A Grid is a set of up to 232 Thread

Blocks executing the same kernel

 A Thread Block is a set of up to 1024

[512 pre-Fermi] Cuda Threads

 Each Cuda Thread is an independent,

lightweight, scalar execution context

 Groups of 32 threads form Warps that

execute in lockstep SIMD

15

What is a Cuda Thread?

 Logically, each Cuda Thread is its own very lightweight

independent MIMD execution context

 Has its own control flow and PC, register file, call stack, ...

 Can access any GPU global memory address at any time

 Identifiable uniquely within a grid by the five integers:

threadIdx.{x,y,z}, blockIdx.{x,y}

 Very fine granularity: do not expect any single thread to do

a substantial fraction of an expensive computation

 At full occupancy, each Thread has 21 32-bit registers

 ... 1,536 Threads share a 64 KB L1 Cache / __shared__ mem

 GPU has no operand bypassing networks: functional unit latencies

must be hidden by multithreading or ILP (e.g. from loop unrolling)

16

What is a Cuda Warp?

 The Logical SIMD Execution width of the Cuda processor

 A group of 32 Cuda Threads that execute simultaneously

 Execution hardware is most efficiently utilized when all threads in a

warp execute instructions from the same PC

 If threads in a warp diverge (execute different PCs), then some

execution pipelines go unused (predication)

 If threads in a warp access aligned, contiguous blocks of DRAM, the

accesses are coalesced into a single high-bandwidth access

 Identifiable uniquely by dividing the Thread Index by 32

 Technically, warp size could change in future architectures

 But many existing programs would break

17

What is a Cuda Thread Block?

18

What is a Cuda Grid?

19

What is a Cuda Stream?

 A sequence of commands (kernel calls, memory transfers)

that execute in order

 For multiple kernel calls or memory transfers to execute

concurrently, the application must specify multiple streams

 Concurrent Kernel execution will only happen on Fermi

 On pre-Fermi devices, Memory transfers will execute concurrently

with Kernels

2020

Outline

 Introduction to GPGPUs and Cuda Programming Model

 The Cuda Thread Hierarchy / Memory Hierarchy

 The Cuda Thread Hierarchy

 The Cuda Memory Hierarchy

 Mapping Cuda to Nvidia GPUs

21

Cuda Memory Hierarchy

 Each Cuda Thread has private access to a

configurable number of registers

 The 128 KB (64 KB) SM register file is

partitioned among all resident threads

 The Cuda program can trade degree of

thread block concurrency for amount of per-

thread state

 Registers, stack spill into (cached, on Fermi)

“local” DRAM if necessary

 Each Thread Block has private access to a

configurable amount of scratchpad memory

 The Fermi SM’s 64 KB SRAM can be

configured as 16 KB L1 cache + 48 KB

scratchpad, or vice-versa*

 Pre-Fermi SM’s have 16 KB scratchpad only

 The available scratchpad space is partitioned

among resident thread blocks, providing

another concurrency-state tradeoff

* selected via cudaFuncSetCacheConfig()

22

Cuda Memory Hierarchy

 Thread blocks in all Grids share access to a large pool of

“Global” memory, separate from the Host CPU’s memory.

 Global memory holds the application’s persistent state, while the

thread-local and block-local memories are temporary

 Global memory is much more expensive than on-chip memories:

O(100)x latency, O(1/50)x (aggregate) bandwidth

 On Fermi, Global Memory is cached in a 768KB shared L2

23

Cuda Memory Hierarchy

 There are other read-only components of the Memory

Hierarchy that exist due to the Graphics heritage of Cuda

 The 64 KB Cuda Constant Memory resides in the same

DRAM as global memory, but is accessed via special read-

only 8 KB per-SM caches

 The Cuda Texture Memory also resides in DRAM and is

accessed via small per-SM read-only caches, but also

includes interpolation hardware

 This hardware is crucial for graphics performance, but only

occasionally is useful for general-purpose workloads

 The behaviors of these caches are highly optimized for their

roles in graphics workloads

24

Cuda Memory Hierarchy

 Each Cuda device in the system has its own Global memory,

separate from the Host CPU memory

 Allocated via cudaMalloc()/cudaFree() and friends

 Host Device memory transfers are via cudaMemcpy() over

PCI-E, and are extremely expensive

 microsecond latency, ~GB/s bandwidth

 Multiple Devices managed via multiple CPU threads

25

Thread-Block Synchronization

26

Using per-block shared memory

27

Using Per-Block Shared Memory

 Each SM has 64 KB of private memory, divided 16KB/48KB

(or 48KB/16KB) into software-managed scratchpad and

hardware-managed, non-coherent cache

 Pre-Fermi, the SM memory is only 16 KB, and is usable only as

software-managed scratchpad

 Unless data will be shared between Threads in a block, it

should reside in registers

 On Fermi, the 128 KB Register file is twice as large, and accessible at

higher bandwidth and lower latency

 Pre-Fermi, register file is 64 KB and equally fast as scratchpad

28

Shared Memory Bank Conflicts

 Shared memory is banked: it consists of 32 (16, pre-Fermi)

independently addressable 4-byte wide memories

 Addresses interleave: float *p points to a float in bank k, p+1 points to

a float in bank (k+1) mod 32

 Each bank can satisfy a single 4-byte access per cycle

 A bank conflict occurs when two threads (in the same warp) try to

access the same bank in a given cycle

 The GPU hardware will execute the two accesses serially, and the

warp's instruction will take an extra cycle to execute

 Bank conflicts are a second-order performance effect: even

serialized accesses to on-chip shared memory is faster than

accesses to off-chip DRAM

29

Shared Memory Bank Conflicts

 Figure G-2 from Cuda C

Programming Gude 3.1

 Unit-Stride access is

conflict-free

 Stride-2 access: thread n

conflicts with thread 16+n

 Stride-3 access is conflict-

free

30

Shared Memory Bank Conflicts

 Three more cases of conflict-

free access

 Figure G-3 from Cuda C

Programming Gude 3.1

 Permuations within a 32-float

block are OK

 Multiple threads reading the

same memory address

 All threads reading the same

memory address is a

broadcast

31

Atomic Memory Operations

 Cuda provides a set of instructions which execute atomically

with respect to each other

 Allow non-read-only access to variables shared between threads in

shared or global memory

 Substantially more expensive than standard load/stores

 Wth voluntary consistency, can implement e.g. spin locks!

32

Voluntary Memory Consistency

 By default, you cannot assume memory accesses are occur in the same

order specified by the program

 Although a thread's own accesses appear to that thread to occur in program

order

 To enforce ordering, use memory fence instructions

 __threadfence_block(): make all previous memory accesses visible to all

other threads within the thread block

 __threadfence(): make previous global memory accesses visible to all other

threads on the device

 Frequently must also use the volatile type qualifier

 Has same behavior as CPU C/C++: the compiler is forbidden from register-

promoting values in volatile memory

 Ensures that pointer dereferences produce load/store instructions

 Declared as volatile float *p; *p must produce a memory ref.

3333

Outline

 Introduction to GPGPUs and Cuda Programming Model

 The Cuda Thread Hierarchy / Memory Hierarchy

 Mapping Cuda to Nvidia GPUs

34

Mapping Cuda to Nvidia GPUs

 Cuda is designed to be "functionally forgiving": Easy to get

correct programs running. The more time you invest in

optimizing your code, the more performance you will get

 Speedup is possible with a simple “Homogeneous SPMD”

approach to writing Cuda programs

 Achieving performance requires an understanding of the

hardware implementation of Cuda

35

Mapping Cuda to Nvidia GPUs

36

Mapping Cuda to Nvidia GPUs

37

Mapping Cuda to Nvidia GPUs

38

Mapping Cuda to Nvidia GPUs

39

Mapping Cuda to Nvidia GPUs

40

Mapping Cuda to Nvidia GPUs

41

Mapping Cuda to Nvidia GPUs

42

Mapping Cuda to Nvidia GPUs

 Each level of the GPU's processor hierarchy is associated

with a memory resource

 Scalar Threads / Warps: Subset of register file

 Thread Block / SM: shared memory (l1 Cache)

 Multiple SMs / Whole GPU: Global DRAM

 Massive multi-threading is used to hide latencies: DRAM

access, functional unit execution, PCI-E transfers

 A highly performing Cuda program must carefully trade

resource usage for concurrency

 More registers per thread fewer threads

 More shared memory ber block fewer blocks

43

Memory, Memory, Memory

 A many core processor ≡ A device for turning a compute

bound problem into a memory bound problem

 Memory concerns dominate performance tuning!

 Memory is SIMD too! The memory systems of CPUs and

GPUs alike require memory to be accessed in aligned blocks

 Sparse accesses waste bandwidth!

 Unaligned accesses waste bandwidth!

44

Cuda Summary

 The Cuda Programming Model provides a general approach

to organizing Data Parallel programs for heterogeneous,

hierarchical platforms

 Currently, the only production-quality implementation is Cuda for

C/C++ on Nvidia's GPUs

 But Cuda notions of "Scalar Threads", "Warps", "Blocks", and "Grids"

can be mapped to other platforms as well

 A simple "Homogenous SPMD" approach to Cuda

programming is useful, especially in early stages of

implementation and debugging

 But achieving high efficiency requires careful consideration of the

mapping from computations to processors, data to memories, and

data access patterns

45

References

 The content expressed in this chapter is come from

 berkeley university open course

(http://parlab.eecs.berkeley.edu/2010bootcampagenda,

Slides-Cuda & Slides-OpenCL)

