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Evolution of GPU Hardware
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[0 CPU architectures have used Moore’s Law to increase
» The amount of on-chip cache
» The complexity and clock rate of processors
» Single-threaded performance of legacy workloads
[0 GPU architectures have used Moore’s Law to
» Increase the degree of on-chip parallelism and DRAM bandwidth
» Improve the flexibility and performance of graphics applications
» Accelerate general-purpose Data-Parallel workloads
mnT FraELT 5
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Cuda Programming Model Goals

Degree of Parallelism

ggg | Provide an inherently scalable
400 - - - environment for Data-Parallel
52388 | B programming across a wide

108 % | H B - | ': range of processors (Nvidia only

makes GPUs, however)

Wasted Make SIMD hardware
accessible to general-purpose
programmers. Otherwise, large
fractions of the available
execution hardware are wasted!

6%
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Cuda Goals: Scalability

600 Degree of Parallelism O Cuda expresses many
333 — iIndependent blocks of
333 — BB computation that can be run
108 . In any order
S 2 N :
,,,@0 @Q\i\ @é\‘ «‘\:ﬁ’ «@q’ 0 Much of the inherent
® P © o scalability of the Cuda
Mt readed CUDA Program Programming model stems
I D from batched execution of

| "Thread Blocks"

GPU with 2 Cores e [0 Between GPUs of the same

— 1 generation, many programs
Block 1 Block®@ Blockl Block2 Block3
l o achieve linear speedup on

Block4  Biocks GPUs with more “Cores”
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Cuda Goals: SIMD Programming

[1 Hardware architects love
SIMD, since it permits a very
space and energy-efficient
Implementation

[0 However, standard SIMD
instructions on CPUs are
iInflexible, and difficult to use,
difficult for a compiler to
target

4 way SIMD (SSE) 16 way SIMD (LRB)

Aoune XE wE X D

” = " = [0 The Cuda Thread abstraction
q}) (J%—?\) will provide programmability
at the cost of additional
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Cuda C Language Extensions

Code to run on the GPU is written in standard C/C++ syntax
with a minimal set of extensions:

— Provide a MIMD Thread abstraction for SIMD execution

— Enable specification of Cuda Thread Hierarchies

— Synchronization and data-sharing within Thread Blocks

— Library of intrinsic functions for GPU-specific functionality

void KernelFunc(...); // define a kernel callable from host
void DeviceFunc(...); // function callable only on the device

int Globalvar; // variable in device memory

int SharedVvar; // in per-block shared memory
KernelFunc (..0.); // 500 blocks, 128 threads each
// Thread indexing and identification
dim3 ;3 dim3 ;  dim3 ;

5 // thread block synchronization intrinsic
, ) , , , , . // <math.h> functionality K¥



SCTS (ooes
Cuda Host Runtime Support

* Cudais inherently a Heterogeneous programming model

— Sequential code runs in a CPU “Host Thread”, and parallel
“Device” code runs on the many cores of a GPU

— The Host and the Device communicate via a PCI-Express link

— The PCI-E link is slow (high latency, low bandwidth): it is
desirable to minimize the amount of data transferred and the
number of transfers

* Allocation/Deallocation of memory on the GPU:

 Memory transfers to/from the GPU:

is
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Hello World: Vector Addition

// Compute sum of length-N vectors: C = A + B
void
vecAdd (float* a, float* b, float* c, int N) {
for (int 1 = 0; 1 < N; 1i++)
c[i] = a[i] + b[1i];

int main () {
int N = ... ;
float *a, *b, *c;
new float[N];
// ... allocate other arrays, fill with data

d

vecAdd (a, b, c, N);
} #r¥
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Hello World: Vector Addition

// Compute sum of length-N vectors: C = A + B
void global

vecAdd (float* a, float* b, float* c, int N) {
int 1 = blockIdx.x * blockDim.x + threadIdx.x;
it (1 < N) c[i] = a[i] + b[i];

int main () A
int N = ... ;
float *a, *b, *c;
cudaMalloc (&a, sizeof(float) * N);
// ... allocate other arrays, fill with data

// Use thread blocks with 256 threads each

vecAdd <<< (N+255)/256, 256 >>> (a, b, c, N);
} %L ¥ 10
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Cuda Software Environment

O

O

Ll
Ll

nvcc compiler works much like icc or gcc: compiles C++ source code,
generates binary executable

Nvidia Cuda OS driver manages low-level interaction with device,
provides API for C++ programs

Nvidia Cuda SDK has many code samples demonstrating various Cuda
functionalities

Library support is continuously growing
» CUBLAS for basic linear algebra
» CUFFT for Fourier Fransforms

» CULapack (3" party proprietary) linear solvers, eigensolvers, ...
OS-Portable: Linux, Windows, Mac OS

A lot of momentum in industrial adoption of Cuda

hkp://developer.nvidia.com/object/cuda_3 1 downloads.html
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O Introduction to GPGPUs and Cuda Programming Model

O The Cuda Thread Hierarchy / Memory Hierarchy
» The Cuda Thread Hierarchy
» The Cuda Memory Hierarchy

O Mapping Cuda to Nvidia GPUs
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Nvidia Cuda GPU Architecture

[1 The Cuda Programming Model is a set of data-parallel extensions to C,
amenable to implementation on GPUs, CPUs, FPGAs, ...

[0 Cuda GPUs are a collection of “Streaming Multiprocessors”
» Each SM is analogous to a core of a Multi-Core CPU

[0 Each SMis a collection of SIMD executon pipelines (Scalar Processors)
that share control logic, register file, and L1 Cache
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Cuda Thread Hierarchy

[1 Parallelism in the Cuda Programming Model is expressed as

‘a 4-level Hierarchy
Grid [0 A Stream is a list of Grids that execute

Block (0, 0)  Block (1,0)  Block (2, 0) in-order. Fermi GPUs execute multiple
Streams in parallel

0 AGrid is a set of up to 232 Thread
Blocks executing the same kernel

[0 AThread Block is a set of up to 1024
[512 pre-Fermi] Cuda Threads

[0 Each Cuda Thread is an independent,
lightweight, scalar execution context

Block (0, 1) Block (1,1) “Block (2, 1)

Block (1, 1)

[0 Groups of 32 threads form Warps that
execute in lockstep SIMD

ﬁ#"rf‘}ﬁk% 14
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What 1s a Cuda Thread?

[1 Logically, each Cuda Thread is its own very lightweight
iIndependent MIMD execution context
» Has its own control flow and PC, register file, call stack, ...
» Can access any GPU global memory address at any time
» ldentifiable uniquely within a grid by the five integers:
threadldx.{x,y,z}, blockldx.{x,y}

[1 Very fine granularity: do not expect any single thread to do
a substantial fraction of an expensive computation
» At full occupancy, each Thread has 21 32-bit registers
» ...1,536 Threads share a 64 KB L1 Cache/ shared mem

» GPU has no operand bypassing networks: functional unit latencies
must be hidden by multithreading or ILP (e.g. from loop unrolling)

il FrHELT oS
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What Is a Cuda Warp?

[0 The Logical SIMD Execution width of the Cuda processor

[1 A group of 32 Cuda Threads that execute simultaneously

» Execution hardware is most efficiently utilized when all threads in a
warp execute instructions from the same PC

» If threads in a warp diverge (execute different PCs), then some
execution pipelines go unused (predication)

» If threads in a warp access aligned, contiguous blocks of DRAM, the
accesses are coalesced into a single high-bandwidth access

» ldentifiable uniquely by dividing the Thread Index by 32
[1 Technically, warp size could change in future architectures

» But many existing programs would break

wnT FrHELT 6
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What Is a Cuda Thread Block?

e A Thread Block is a virtualized multi-threaded core

— Number of scalar threads, registers, and memory
are configured dynamically at kernel-call time

— Consists of a number (1-1024) of Cuda Threads, who all share
the integer identifiers

* ... executing a data parallel task of moderate granularity

— The cacheable working-set should fit into the 128 KB (64 KB,
pre-Fermi) Register File and the 64 KB (16 KB) L1

— Non-cacheable working set limited by GPU DRAM capacity
— All threads in a block share a (small) instruction cache

* Threads within a block synchronize via barrier-intrinsics and
communicate via fast, on-chip shared memory

wnl FrHELT 4
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What 1s a Cuda Grid?

* Aset of Thread Blocks performing related computations

— All threads in a single kernel call have the same entry point and
function arguments, initially differing only in

— Thread blocks in a grid may execute any code they want, e.g.
switch ( ) { ... } incursno extra penalty

* Performance portability/scalability requires many blocks
per grid: 1-8 blocks execute on each SM

* Thread blocks of a kernel call must be parallel sub-tasks
— Program must be valid for any interleaving of block executions

— The flexibility of the memory system technically allows Thread
Blocks to communicate and synchronize in arbitrary ways ...

— E.G. Shared Queue index: OK! Producer-Consumer: RISKY!
wnl FrAELT 8
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What I1s a Cuda Stream?

[1 A sequence of commands (kernel calls, memory transfers)
that execute in order

[1 For multiple kernel calls or memory transfers to execute
concurrently, the application must specify multiple streams
» Concurrent Kernel execution will only happen on Fermi

» On pre-Fermi devices, Memory transfers will execute concurrently
with Kernels

cudaMemcpy (a@, cpu a@, NoO*sizeof(float),
cudaMemcpyHostToDevice, )
vecAdd <<<N@/256, 256, 0O, >>> (a0, bo, cO, NO);

cudaMemcpy (al, cpu al, Nl*sizeof(float),
cudaMemcpyHostToDevice, );
vecAdd <<<N1/256, 256, 0O, >>> (al, bl, c1, N1); +##x+%¥
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O The Cuda Thread Hierarchy / Memory Hierarchy
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Cuda Memory Hierarchy

[0 Each Cuda Thread has private access to a

Per-thread configurable number of registers
Local Memo » The 128 KB (64 KB) SM regqister file is
partitioned among all resident threads
» The Cuda program can trade degree of
thread block concurrency for amount of per-
thread state
» Registers, stack spill into (cached, on Fermi)
“local” DRAM if necessary
[0 Each Thread Block has private access to a

configurable amount of scratchpad memory

» The Fermi SM’s 64 KB SRAM can be
configured as 16 KB L1 cache + 48 KB
scratchpad, or vice-versa*

» Pre-Fermi SM’s have 16 KB scratchpad only

» The available scratchpad space is partitioned

* selected via cudaFuncSetCacheConfig()  among resident thread blocks, providing

another concurrency-state tradeoff

Per-block
Shared

Memory




Cuda Memory Hierarchy

SCTS ﬁ

[1 Thread blocks in all Grids share access to a large pool of
“Global” memory, separate from the Host CPU’s memory.

» Global memory holds the application’s persistent state, while the
thread-local and block-local memories are temporary

» Global memory is much more expensive than on-chip memories:
O(100)x latency, O(1/50)x (aggregate) bandwidth

1 On Fermi, Global Memory is cached in a 768KB shared L2

Sequential
Kernels

ernel o

Kernel 1

<+->

Per Device Global
Memory

pop FEREET 2
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Cuda Memory Hierarchy

O

[l

There are other read-only components of the Memory
Hierarchy that exist due to the Graphics heritage of Cuda

The 64 KB Cuda Constant Memory resides in the same
DRAM as global memory, but is accessed via special read-
only 8 KB per-SM caches

The Cuda Texture Memory also resides in DRAM and is
accessed via small per-SM read-only caches, but also
Includes interpolation hardware

» This hardware is crucial for graphics performance, but only
occasionally is useful for general-purpose workloads

The behaviors of these caches are highly optimized for their
roles in graphics workloads S HrARAT
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Cuda Memory Hierarchy

[l Each Cuda device in the system has its own Global memory,
separate from the Host CPU memory

» Allocated via cudaMalloc()/cudaFree() and friends

[1 Host¢=yDevice memory transfers are via cudaMemcpy() over
PCI-E, and are extremely expensive

» microsecond latency, ~GB/s bandwidth

1 Multiple Devices managed via multiple CPU threads

’ cudaMemcpy() Device 0
cudaMemcpy() i
Mﬁ Franrf o,
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Thread-Block Synchronization

* |Intra-block barrier instruction syncthreads() for synchronizing
accessesto shared and global memory

— To guarantee correctness, must  syncthreads() before reading
values written by other threads

— All threads in a block must execute the same  syncthreads(), or
the GPU will hang (not just the same number of barriers !)

* Additional intrinsics worth mentioning here:

— int _ syncthreads_count(int), int _ syncthreads_and(int),
int _ syncthreads_or(int)

extern _ shared  float T[];

__device  void

transpose (float* a, int 1lda){
int 1 = threadldx.x, j = threadldx.y;
T[1 + 1lda*j] = a[1 + lda*j];
__syncthreads();
a[i + 1lda*j] = T[] + lda*1i];
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Using per-block shared memory

The per-block shared memory / L1 cache is a crucial
resource: without it, the performance of most Cuda
programs would be hopelessly DRAM-bound
Block-shared variables can be declared statically:
int begin, end;
Software-managed scratchpad is allocated statically:
int scratch[128];

scratch|[ ] = ...
... or dynamically:
extern int scratch[];
kernel_call <<< grid_dim, block_dim, > ( van );
Most intra-block communication is via shared scratchpad:
scratch[ ] = ...;
int left = scraich[ - 1];

T FraELT 56
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Using Per-Block Shared Memory

[1 Each SM has 64 KB of private memory, divided 16KB/48KB
(or 48KB/16KB) into software-managed scratchpad and
hardware-managed, non-coherent cache

» Pre-Fermi, the SM memory is only 16 KB, and is usable only as
software-managed scratchpad

[0 Unless data will be shared between Threads in a block, it
should reside in registers

» On Fermi, the 128 KB Register file is twice as large, and accessible at
higher bandwidth and lower latency

» Pre-Fermi, reqister file is 64 KB and equally fast as scratchpad

mnl FrauELF 5
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Shared Memory Bank Conflicts

[l Shared memory is banked: it consists of 32 (16, pre-Fermi)
Independently addressable 4-byte wide memories
» Addresses interleave: float *p points to a float in bank k, p+1 points to
a float in bank (k+1) mod 32
[1 Each bank can satisfy a single 4-byte access per cycle

» A bank conflict occurs when two threads (in the same warp) try to
access the same bank in a given cycle

» The GPU hardware will execute the two accesses serially, and the
warp's instruction will take an extra cycle to execute

[l Bank conflicts are a second-order performance effect: even
serialized accesses to on-chip shared memory is faster than
accesses to off-chip DRAM

il FraELT o8
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Shared Memory Bank Conflicts

s  —d ; [1 Three more cases of conflict-
X Tl el - 5 free access
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Atomic Memory Operations

[1 Cuda provides a set of instructions which execute atomically
with respect to each other

>

>

Allow non-read-only access to variables shared between threads in
shared or global memory

Substantially more expensive than standard load/stores

Wth voluntary consistency, can implement e.g. spin locks!

wnl FraELT 5
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Voluntary Memory Consistency

[1 By default, you cannot assume memory accesses are occur in the same
order specified by the program

» Although a thread's own accesses appear to that thread to occur in program
order

[0 To enforce ordering, use memory fence instructions

> make all previous memory accesses visible to all
other threads within the thread block

> make previous global memory accesses visible to all other
threads on the device

[0 Frequently must also use the type qualifier

» Has same behavior as CPU C/C++: the compiler is forbidden from register-
promoting values in volatile memory

» Ensures that pointer dereferences produce load/store instructions

» Declared as float *p; *p must produce a memory ref.

wnp FrAELF 3
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Mapping Cuda to Nvidia GPUs

[l Cuda is designed to be "functionally forgiving": Easy to get
correct programs running. The more time you invest in
optimizing your code, the more performance you will get

[l Speedup is possible with a simple “Homogeneous SPMD”
approach to writing Cuda programs

[1 Achieving performance requires an understanding of the
hardware implementation of Cuda
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Mapping Cuda to Nvidia GPUs

* Scalar Thread < SIMD Lane
* Warp < SIMD execution granularity

* Thread Block <> Streaming Multiprocessor
Grid < Multiple SMs
* Set of Streams < Whole GPU
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Mapping Cuda to Nvidia GPU

* Scalar Thread < SIMD Lane

* Warp < Logical SIMD width

* Thread Block <> Streaming Multiprocessor
* Grid & Multiple SMs

* Set of Streams < Whole GPU
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Mapping Cuda to Nvidia GPUs

* Scalar Thread < SIMD Lane

* Warp < Logical SIMD width

* Thread Block <& Stieaming Multiprocessor
* Grid < Multiple SMis

* Set of Streams & ole GPU
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Mapping Cuda to Nvidia GPU

Scalar Thread < SIMD Lane

Warp < Logical SIMD width

Thread Block <> Streaming Multiprocessor
Grid <& Multiple SMs

Set of Streams < Whole GPU
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Mapping Cuda to Nvidia GPUs

Scalar Thread < SIMD Lane
Warp < SIMD execution granularity
Thread Block <> Streaming Multiprocessor
Grid <& Multiple SMs

Set of Streams < Whole GPU
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Mapping Cuda to Nvidia GPUs

* Scalar Thread < SIMD Lane

* Warp < Logical SIMD width

* Thread Block <& Streaming Multiprocessor
Grid <» Multiple SMs

* Set of Streams < Whole GPU
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e Scalar Thread < SIMD Lane
* Warp <~ Logical SIMD width
* Thread Block < Streaming Multiprocessor
* Grid < Multiple SMs
Set of Streams & Whole GPU
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Mapping Cuda to Nvidia GPUs

[1 Each level of the GPU's processor hierarchy is associated
with a memory resource
» Scalar Threads / Warps: Subset of register file
» Thread Block / SM: shared memory (I1 Cache)
» Multiple SMs / Whole GPU: Global DRAM

[1 Massive multi-threading is used to hide latencies: DRAM
access, functional unit execution, PCI-E transfers

1 A highly performing Cuda program must carefully trade
resource usage for concurrency

» More registers per thread {=>fewer threads
» More shared memory ber block {=) fewer blocks

unl FraELF 4



SCTS - (ooe
Memory, Memory, Memory

[1 A many core processor = A device for turning a compute
bound problem into a memory bound problem

» Memory concerns dominate performance tuning!
[J Memory is SIMD too! The memory systems of CPUs and
GPUs alike require memory to be accessed in aligned blocks
» Sparse accesses waste bandwidth!
ML lal =01 2 words used, 8 words loaded:
14 effective bandwidth
%_l

cache line
» Unaligned accesses waste bandwidth!

4 words used, 8 words loaded:
|“Bnﬂﬂﬂ| 1/ effective bandwidth
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Cuda Summary

[l The Cuda Programming Model provides a general approach
to organizing Data Parallel programs for heterogeneous,
hierarchical platforms

» Currently, the only production-quality implementation is Cuda for
C/C++ on Nvidia's GPUs

» But Cuda notions of "Scalar Threads", "Warps", "Blocks", and "Grids"
can be mapped to other platforms as well

[1 A simple "Homogenous SPMD" approach to Cuda
programming is useful, especially in early stages of
Implementation and debugging

» But achieving high efficiency requires careful consideration of the
mapping from computations to processors, data to memories, and

data access patterns T Fraux¥t 44
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