SCTS 5

Parallel Programming Principle and Practice

Lecture 4 — Parallel Programming Methodology

P T
I&E’g’ Jin, Hal

\

School of Computer Science and Technology

Huazhong University of Science and Technology

SCTS 5
Outline

Motivating Problems
Steps in Creating a Parallel Program

What a Simple Parallel Program Looks Like

wnp FrasELY

Parallel programming methodology

MOTIVATING PROBLEMS

wny FrAsELF 5

SCTS (ooen
Motivating Problems

[1 Simulating Ocean Currents

» Regqular structure, scientific computing

[1 Simulating the Evolution of Galaxies

» lrregular structure, scientific computing

[l Rendering Scenes by Ray Tracing

» lrregular structure, computer graphics

wnp Fra#nxt 4

SCTS (ooe
Simulating Ocean Currents

-

00 0C00o 000
o000 00000
o000 O00O000
Q000 oo o 000
o Q0o Q0o 0Q00
oo oo o a0
00O o0o000
o oo oo o oo o
000000000
o0 0000000

— |

V4

{a) Cross sections (b) Spatial discretization of a cross section

[Model as two-dimensional grids
[1 Discretize in space and time
» finer spatial and temporal resolution -> greater accuracy

1 Many different computations per time step
» set up and solve equations

[1 Concurrency across and within grid computations
uy Fra#axT 5

SCTS (ooen
Simulating Galaxy Evolution

[1 Simulate the interactions of many stars evolving over time
[0 Computing forces is expensive
[0 O(n?) brute force approach

O Hierarchical methods take advantage of force law: G ™™=

}"“?
Star on which forces
are being computed o |Large group far
GOD 'DD O |enoughawayto
o~ O O|approximate
© oo0o0
C0poO
O O O

; Small group far enough away to

Star too close to oo approximate to center of mass
approximate

1 Many time-steps, plenty of concurrency across stars within

one o #ranxy 6

SCCS feeer
Rendering Scenes by Ray Tracing

[1 Shoot rays into scene through pixels in image plane
[1 Follow their paths

» They bounce around as they strike objects

> They generate new rays: ray tree per input ray

O]

Result is color and opacity for that pixel

O]

Parallelism across rays

All case studies have abundant concu

mpwa den Stamen
T Francs 7

Creating a Parallel Program

[l

[l

CGCL

oy

Assumption: Sequential algorithm is given
» Sometimes need very different algorithm, but beyond scope

Pieces of the job

» ldentify work that can be done in parallel

» Partition work and perhaps data among processes

» Manage data access, communication and synchronization
» Note: work includes computation, data access, and 1/O

Main goal: Speedup (plus low prog. effort and resource

needs) Performance(p)
d =
5P'EE UP l‘j,) Pgrfgrmﬂﬂf:ﬁ(j)
For a fixed problem
- Time(1)

Speedwp (P) = Time(p)

wnp Fra#nxt g

Parallel programming methodology

STEPS IN CREATING
PARALLEL PROGRAM

wnp Fra#nxt g

SCTS (ooen
Some Important Concepts

[l Task
» Arbitrary piece of undecomposed work in parallel computation
» Executed sequentially; concurrency is only across tasks
» e.g. a particle/cell in Barnes-Hut, a ray or ray group in Raytrace
» Fine-grained versus coarse-grained tasks

[1 Process (thread)

» Abstract entity that performs the tasks assigned to processes
» Processes communicate and synchronize to perform their tasks

[1 Processor
» Physical engine on which process executes

» Processes virtualize machine to programmer
« first write program in terms of processes, then map to processors

iy FrHELT 0

SCTS (ooe
Limited Concurrency: Amdahl’'s Law

Fundamental limitation on parallel speedup

If s = fraction of sequential execution that Is

Inherently serial

then speedup = 1/s

wny Fr#ELY 4

SCTS é‘_
Amdahl’s Law Example

[l 2-phase computation over an n-by-n grid

» Phase 1: perform an independent computation on each grid element

e easy to parallelize
» Phase 2: add a value from each grid element into a global sum

« more difficult to parallelize; serial by default

-

[l Sequential Execution

> both phases take n?time; 2n?total n

¥

— N —»

. __
- -

n2 n2

Parallelism

Elapsed Time

SCTS (ooe
First Attempt at Parallelization

[1 Strategy

» Phase 1: execute in parallel

e time for phase 1 =n?/p

» Phase 2: execute serially

e time for phase 2 =n?

nz nz
[1 Overall Performance .
2
> Speedup <= 22” £
n- + 5 ﬁ:
p S - ﬁ

3 A
= ¥
I'}
=N
\j

) Elapsed Time
> l.e. no more than 2 P

ﬁ#‘f’ﬂ’frﬁk? 13

SCTS (ooe
Parallelizing Phase 2

|
L1 Trick: divide second phase into two steps

» Step 1: accumulate into private sum during sweep

» Step 2: add per-process private sum into global sum

[Overall Performance:
1
> Parallel time = = ﬁ

2 2
n2/p + n2/p + p P " "
» Speedup

2”2 +p2 nz/p nZ

close to p if n>>p

Parallelism

[
|

]l il — -

ngfp HE;P p EIGPSEd Time

SCTS (ooe
Concurrency Profiles

[J Cannot usually divide into serial and fully parallel parts

1,400

1,200 H

1,000

800 4

600 |

“l IR
L LI N

g 8 2 F 8 2
@ ™M = = = um

Concurrency

0

219 F

247 o

A
L
B

3

313

Clock cycle number

Area under curve is total work done, or time with 1 processor

Horizontal extent is lower bound on time (infinite processors)

_ _ Z‘f;}k i
Speedup is the ratio: ——1— , base case:

Zfﬂ‘i—‘ s+ d=s

K P

Amdahl’s law applies té_énygverhead, not just limited concurrency
ﬁ FrHuL¥ 15

O O 0O 0O

SCTS (ooe
Steps In Creating a Parallel Program

Partitioning
|
| |
-
S o E S
:Iu__w DQ = [\ [\'I ©
[| Po P1 L
g o 5"\ g
w
—§ O v . <
N - N g
fa) E@ Il' O
O |7
QC)
Sequential Tasks Processes Parallel Processors
Computation Program

4 steps: Decomposition, Assignment, Orchestration, Mapping
» Done by programmer or system software (compiler, runtime, ...)

» Issues are the same, so assume programmer does it all explicitly

uny Fr#ELT 16

SCTS (ooe
Decomposition

[l Break up computation into tasks to be divided among
processes

» l.e. ldentify concurrency and decide level at which to exploit it

[1 Tasks may or may not be defined statically

» Tasks may become available dynamically

» Lots of available tasks may vary with time

[0 Goal: Enough tasks to keep processes busy, but not too
many

» Lots of tasks available at a time is upper bound on achievable
speedup

ﬁ#‘f’ﬂ’frﬁk? 17

SCTS (ooe
Steps In Creating a Parallel Program

Partitioning
| | |
(\ 5 0t
. S |Po
g o &5 " ki
_E,OYY 9
9 o <
o “o [+,
O
CD@
Sequential Tasks Processes Parallel Processors
Computation Program
1 4 steps: , Assignment, Orchestration,
Mapping

iy FrHELT 18

SCTS 5
Assignment

[1 Specifying mechanism to divide work up among processes
» e.g. which process computes forces on which stars, or which rays
» Together with decomposition, also called partitioning
» Goals: balance workload, reduce communication and management cost

[1 Structured approaches usually work well
» Code inspection (parallel loops) or understanding of application
» Well-known heuristics
» Slatic versus dynamic assignment

[1 As programmers, we worry about partitioning first
» Usually independent of architecture or programming model
» But cost and complexity of using primitives may affect decisions

[1 As architects, we assume program does reasonable job of it

unp Fr##ELT 19

SCTS (ooe
Steps In Creating a Parallel Program

Partitioning
|
| |
-
S O E S
= I
T O & U (7 "
£ S S
—_— Q—PQD - E—h _ﬁ
o
- »s :
-
U C)@
Sequential Tasks Processes Parallel Processors
Computation Program

[4 steps: Decomposition, Assignment, Orchestration,
Mapping
il Fr#ELF 50

SCTS (ooe
Orchestration

» Main task
» Naming data
» Structuring communication
» Synchronization
» Organizing data structures and scheduling tasks temporally

[0 Goals
» Reduce cost of communication and synchronization as seen by processors
» Preserve locality of data reference (incl. data structure organization)
» Schedule tasks to satisfy dependences early
» Reduce overhead of parallelism management

[0 Closest to architecture (and programming model & language)
» Choices depend a lot on communication abstraction, efficiency of primitives
» Architects should provide appropriate primitives efficiently

uny FrAHELT 5

SCTS (ooe
Steps In Creating a Parallel Program

Partitioning
|
| |
-
kS o S £
SIS NATAR- g
g O &) % = o7
E, O 8 J
_— 8—.- D — ‘:E—-' —Fcu -
.
O "
C:)@
Sequential Tasks Processes Parallel Processors
Computation Program

[4 steps: Decomposition, Assignment, Orchestration,
Mapping
iy FrAHELF 5

SCTS é‘_

Mapping

O
O

After orchestration, already have parallel program
Two aspects of mapping

» Which processes will run on same processor, if necessary

» Which process runs on which particular processor
* mapping to a network topology

One extreme: space-sharing

» Machine divided into subsets, only one application at a time in a subset
» Processes can be pinned to processors, or left to OS

Another extreme: complete resource management control to OS

» OS uses the performance technigues we will discuss later

Real world is between the two

» User specifies desires in some aspects, system may ignore

Usually adopt the view: process <-> processor

ﬁ#‘f’ﬂ’frﬁk? 23

SCCS feser
Parallelizing Computation vs. Data

[1 Above view is centered around computation

» Computation is decomposed and assigned (partitioned)

[1 Partitioning data is often a natural view too
» Computation follows data: owner computes

» Grid example; data mining; High Performance Fortran (HPF)

[1 But not general enough

» Distinction between computation and data stronger in many
applications

» Retain computation-centric view

» Data access and communication is part of orchestration

ﬁ Frasxr¥ o4

SCTS 5
High-level Goals

[1 High performance (speedup over sequential program)

Table 2.1 Stepsin the Parallelization Pocess and Their Goals

Architecture-

Step Dependent? Major Performance Goals
Decomposition Maostly no Expose enough concurency but not too much
Assignment Maostly na Balance workload
Feduce communication volume
Orchestration Yes Reh:lucie noninhesnt communication via data
cality

Reduce communication and synchonization cost
as seen by the processor

Reduce serialization at shared resources

Schedule tasks to satisfy dependences early

Mapping Yes Put related processes on the same pocessor if
necessary
Exploit locality in network topology

[1 Butlow resource usage ana aeveiopment effort
1 Implications for algorithm designers and architects
» Algorithm designers: high-performance, low resource needs

» Architects: high-performance, low cost, reduced programming effort

e e.g. gradually improving performance with programming effort may be
preferable to sudden threshold after large programmi%;bg,mﬁkg 2

Parallel programming methodology

WHAT PARALLEL PROGRAMS
LOOK LIKE

il FrHELT 50

SCLCS _/fcecr
Parallelization of an Example Program

[1 Motivating problems all lead to large, complex programs

[1 Examine simplified version of a piece of Ocean simulation

» lterative equation solver

1 lllustrate parallel program in low-level parallel language
» C-like pseudocode with simple extensions for parallelism
» Expose basic comm. and synch. primitives that must be supported

» State of most real parallel programming today

gy FrH#xT o

SCLS .leccL

oy

Grid Solver Example

OO0 000000 O0

00 0000O0O0O0

00 00O0O0O0OOO O Expression for updating each

O 000O0OOOOoO interior point:

00O O 0 00O

00 --%—- O 0 0O A[i,j] = 0.2 x (A[i,Jj]+A[1,]-1]+A[1-1,3]+
0 0 o0 O 0 00O Ali, j+1]+A[i+1,]3])
0O 000O0O0OOGO OO

0O 00O0OO0O0O0OO0OOo

00 00O0O0OO0GOOo

0 0000O0O0O0Oo

[0 Simplified version of solver in Ocean simulation

[0 Gauss-Seidel (near-neighbor) sweeps to convergence

>

>
>
>
>

interior n-by-n points of (n+2)-by-(n+2) updated in each sweep
updates done in-place in grid, and diff from previous value computed
accumulate partial diffs into global diff at end of every sweep

check if error has converged to (within a tolerance parameter)

if so, exit solver; if not, do another sweep

iy FrasELY o8

25.
26.
27.

/*size of matrix: (n + 2-by-n + 2) elements*/

/*read input parameter: matrix size*/

A 4 malloc (a 2-d array of g2ize n + 2 by n + 2 doubles);

/*initialize the matrix A somehow®*/
/*call the routine to solve equation®/

/*solve the equation system®/
/*A'is an (n+ 2)-by-(n + 2) array®/

/*outermost loop over sweeps™/
/*initialize maximum difference to 0%/

/*sweep over nonborder points of grid*/

/*save old value of element®/
+ A[i,§-1] + A[i-1,5] +

int n;
float **A, diff = 0;
main()
begin
read(n) ;
initialize (A) ;
Solwve (A);
end main
.procedure Solwve (A)
float **A;
.begin
int i, j, done = 0;
float diff = 0, temp;
while (l!done) do
diff = 0;
for i « 1 to n do
for § << 1 to n do
temp = A[i,j];
Ali,j] « 0.2 * (A[i,7]
Afi,j+1] + A[i+1,3]) ; /Fcompute average®/
diff += abs(A[i,j] - temp);
end for
end for
if (diff/(n*n) < TOL) then done = 1;
end while
end procedure

SCTS (ooe
Decomposition

[1 Simple way to identify concurrency is to look at loop iterations
» dependence analysis; if not enough concurrency, then look further

[1 Not much concurrency here at this level (all loops sequential)
[0 Examine fundamental dependences, ignoring loop structure

!'

(>
2
" L
L

[~ = ()

[0 Concurrency O(n) along anti-diagonals, serialization O(n) along diag
[0 Retain loop structure, use pt-to-pt synch; Problem: too many synch ops

[0 Restructure loops, use global synch; imbalance and too much synch
3 Franrd 30

SCTS 5

Exploit Application Knowledge

O

O 0O O O

Reorder grid traversal: red-black ordering

® @ o @ & @ 0 0 0 0O

@ @ 2 ¢ 2 & 0 & 00 ® Red point
® @ o ® & @ ®# 0 @ O ® Rlack point

p

e & © O ? ® © & 0 0

e @ ° .—T—. e @ o 0

@ & @ o e @ & 0 0

® @ o © o @ 0 @ 0 O

@ & 2 ¢ 2 & @& & 00

® © ® & & & & O & O

@ & @2 ¢ & & & @& 00

Different ordering of updates: may converge quicker or slower

Red sweep and black sweep are each fully parallel

Global synch between them (conservative but convenient)

Ocean uses red-black; we use simpler, asynchronous one to illustrate
» no red-black, simply ignore dependences within sweep

» sequential order same as original, parallel program nondeterministic

unp FrA#ELF 5

SCTS (ooen
Decomposition Only

15. while ('done) do /*a sequential loop*/
16. diff = 0;

17. for all i « 1 to n do /*a parallel loop nest*/
18. for all j « 1 to n do

19. temp = A[i,j];

20. A[i,j] « 0.2 * (A[i,j] + A[i,j-11 + A[i-1,3] +
21. A[i,j+1] + A[i+1,3]1);

22, diff += abs(A[i,]j] - temp);

23. end for all

24, end fo:_aIl

25, if (diff/(n*n) < TOL) then done = 1;
26. end while

[0 Decomposition into elements: degree of concurrency n?
[1 To decompose into rows, make line 18 loop sequential; degree n

[1 for_all leaves assignment to the system
» but implicit global synch. at end of for_all loop

iy FrHELT 3

SCTS (ooe
Assignment

1 Static assignments (given decomposition into rows) |
» Dblock assignment of rows: Row i is assigned to proces: H
» cyclic assignment of rows: process i is assigned rows 1, ’!wp , and so on

OO0 0|l e ®#|@ @ @|C O O
o0 ol e @@ @ @0 O O
OO0 CoO|l®e® &|® ® (0O O O
OO0 ol e &|@®@ @ (0O O O
OO0l e &|l@ @ @O O O
OO0 Q| e ®|l® ®@ (0 O O
OO0 ol e @|® ® @0 O O
OO0 Q| e &|® @ @0 O O
OO0 0|l e &|l@ @ @O O O
o0 0| e ®&|® @ @0 O O

[0 Dynamic assignment
» getarow index, work on the row, get a new row, and so on
[1 Static assignment into rows reduces concurrency (from n to p)
» block assignment reduces communication by keeping adjacent rows together
[0 Let's dig into orchestration under three programming models

g FrH#xT 33

_/cGecL

SCS

Data Parallel Solver

S

W0 -] o N

10.
11.

1z2.
13.

14.
14a.
15.
16.

17.

18.
15.

20.
21.
22,
23.
24,
24a.
25.
26 .
27 .

int n, nprocs;
float **npn, Aiff = 0:

main ()

begin
read (n) ; read (nprocs) ;
A « G_MALLOC
initialize (&) :
Solve (4);

end main

procedure Solwve (A)
float **4;

begin
int i, j, done = 0;
float mydiff - 0, temp;

DECOMFP A [BLOCK, *,
while (!done) do
mydiff = 0;
for all 1 « 1 to n do
for all j < 1 to n do

temp E P-L[ir:l];
A[i,3+1] + A[i+1,3]1);

mydiff += abs(A[i,]]
end for all
end for all
REDUCE (mydiff, diff,
if (diff/(n*n) <« TOL)
end while
end procedure

(a 2-d array of size

[*grid size (n + 2-by-n + 2) and number of processes™®/

/*read input grid size and number of processes®/
n+2 by n+2 doubles);

initialize the matrix A somehow™*/

/*call the routine to solve equation®/

/*solve the equation system™*/
/*As an (n+ 2-by-n + 2) array®/

nprocs] ;

[*outermost loop over sweeps*/
S¥initialize maximum difference to 0%/

/*sweep over non-border points of grid*/

/*save old value of element®/
+ Ali,j-1] + A[i-1,7] +
compute average/
- temp) ;

ADD) ;
then done =

1;

34

SCTS (ooe
Shared Address Space Solver

Single Program Multiple Data (SPMD)

Processes

ol

Solve Solve solve Solve

)

Sweep

| Test Convergence
v ' '
[J Assignment controlled by values of variables used as loop

bounds ﬁ#mﬁk? N

2b.
2e.

LM s L

[S R R
B e

1z,
13.

14.

lda.
1db.

15.
1a.

16a.

17.

18.
19.
20.
21.
2.
23.
24 .

25a .
25h.
250,
25d.
28@ .

25F.

26
27.

int n, nproecs; Mmatrix dimension and number of processors to be used®/

float **A, diff; [#A i global (shared) array representing the grid*/
Sdiff is global (shared) maximum difference in current
sweep®/
LOCKDEC(diff lock); Hdeclaration of lock to enforce mutual exclusion®/
BARDEC (barl); [Mharrier declaration for global synchronization between
sweeps®/
main{)
begin
read(n); read{nmprocs); Mread mput matrix size and number of processes®/
A + G MAILOC (a two-dimensional array of size n+2 by n+2 doubles);
initialize (&) ; Minitialize A in an unspecified way*/

CREATE (nprocs-1, Scolve, A};

Solwve (&) ; {*main process becomes a worker too®/

WAIT FOR END (mprocs-1); SFweait for all child processes created to terminate®/

end main

procedure Solwve (&)

float *+A; FEA is entire o2 <by<nt2 shared array,
as in the sequential program®/
begin
int i,j, pid, done = 0;
float temp, mydiff = O; [Mprivate variables®/
int mymin = 1 + (pid * n/nprocs); [*assume that nis exactly divisible by */
int mymax = mymin + n/npreoecs - 1 Snprocs for simplicity here®/
while (!done) do M*outer loop over all diagonal elements®/
mydiff = diff = 0; M*get global diff to 0 (okay for all to do it)*/
BARRIER(barl, nprocs); f*ensure all reach here before anyone modifies diff*/
for 1 + mymin to mymax do {*for each of my rows®/
for j + 1 to n do {*for all nonborder elements in that row®/

temp = A[i,]];
Ali,j] = 0.2 * (A[i,§)] + A[i,§-1] + A[i-1,7] +
Ali,§+1] + Ali+1,41);
mydiff += abs(a[i,j] - temp);
endfor
endfor
LOCE(diff lock); Mupdate global diff if necessary */
diff += mrdiff;
UNLOCE (diff lock);
BARRIER (barl, nprocs); /*ensure all reach here before checking if done*/
if (diff/(n*n) < TOL) then done = 1; /*check convergence; all get
same answer®/

BARRIER (barl, nprocs);

endwhile
end procedure

p ">

SCTS (ooen
Notes on SAS Program

[1 SPMD: not lockstep or even necessarily same instructions

[1 Assignment controlled by values of variables used as loop
bounds

» Unique pid per process, used to control assignment

1 “Done” condition evaluated redundantly by all

Code that does the update identical to sequential program

» [Each process has private mydiff variable

[1 Most interesting special operations are for synchronization

» Accumulations into shared diff have to be mutually exclusive

» Why the need for all the barriers?
wnp Franxt 3

SCTS (ooe
Need for Mutual Exclusion

[1 Code each process executes
load the value of diff into register rl
add the register r2 to register rl

store the value of register rl into diff

[l A possible interleaving

P1 P2
rl « diff
rl « diff

rl « rl+r2
rl « rl+r2

diff « rl
diff « rl

[l Need the sets of operations to be atomic (mutually exclusive)
ﬁ Fran+d 38

SCTS _foocL

oy

Mutual Exclusion

[1 Provided by LOCK-UNLOCK around critical section

» Set of operations we want to execute atomically
» Implementation of LOCK/UNLOCK must guarantee mutual exclusive

[1 Can lead to significant serialization if contended

» Especially since expect non-local accesses in critical section
» Another reason to use private mydiff for partial accumulation

il Fr#EL¥ 59

SCTS (ooe
Global Event Synchronization

[l BARRIER(nprocs): wait here till nprocs processes get here
» Built using lower level primitives
» Global sum example: wait for all to accumulate before using sum

» Often used to separate phases of computation

Process P_1 Process P 2 Process P_nprocs

set up egn system set up eqn system set up eqn system
Barrier (name, nprocs) Barrier (name, nprocs) Barrier (name, nprocs)
solve eqgn system solve eqn system solve eqgn system
Barrier (name, nprocs) Barrier (name, nprocs) Barrier (name, nprocs)
apply results apply results apply results

Barrier (name, nprocs) Barrier (name, nprocs) Barrier (name, nprocs)

» Conservative form of preserving dependences, but easy to use

[0 WAIT_FOR_END (nprocs-1)
- - il FrHELT 40

SCTS (ooe
Pt-to-pt Event Synch

[1 One process notifies another event so it can proceed
» Common example: producer-consumer (bounded buffer)
» Concurrent programming on uniprocessor. semaphores

» Shared address space parallel programs: semaphores , or use
ordinary variables as flags

P4)
A =1;
b: flag

1l;
a: while (flag is 0) do nothing;

print A;

» Busy-waiting or spinning

ﬁ#‘f’ﬂ’frﬁk? 41

SCTS _foocL

iy

Group Event Synchronization

[1 Subset of processes involved

» Can use flags or barriers (involving only the subset)

» Concept of producers and consumers

1 Major types
» Single-producer, multiple-consumer
» Multiple-producer, single-consumer

» Multiple-producer, multiple-consumer

il FraELF 4

SCTS 5

Message Passing Grid Solver

[l

[l

Cannot declare A to be shared array any more

Need to compose it logically from per-process private arrays
» Usually allocated in accordance with the assignment of work

» Process assigned a set of rows allocates them locally

Transfers of entire rows between traversals

Structurally similar to SAS (e.g. SPMD), but orchestration
different

» Data structures and data access/naming

» Communication

» Synchronization
unl FrHELT 43

1. int pid, n, b; [*process id, matrix dimension and number of
processors o be used ®

Z. float **myh;

3. maini)

4. begin

. readin) ; read (Mproca) ; M*read input matrix size and number of pocesses®
3. CREATE (mprocs-1, Solwe);

ahb. Solvel); Fmain process becomes a worker too®/

g8c. WAIT FOR_EMD (nprocs-1); /*wait for all child pmoeesses created to temminate®/

4. end main

10. procedure Saolwvel()

11. begin
13, int i,3, pid, m* = n/nprocs, done = 0;
14. float cemp, tempdiff, mydiff - 0; [Fprivate varighles*/
& myh + malloci{a 2-4 array of size [n/nprocs + 2] by n+2);
Fmy assigned rows of A%/

7. initialize (myd) ; [Finitial ize my rows of A, in an unspecified way®/
15. while (!done) do
16. mydiff = 0; (et local diff to 0%/
16a. if (pid != 0) then SEND (smyA[1,0],n*sizecf (float),pid-1,ROW);
1:chb. if (pid != nproce-1) then

SEND (Emyh[n' , 0] ,n*sizecf (float) ,pid+l, ROW) ;
16c. if (pid != 0) then RECEIVE(amyA[0,0] ,n*sizeaf (float),pid-1,ROW);
1ad. if (pid != nproce-1) then

RECEIVE(pmyA([n*+1,0] ,n*sizecfifloat), pid+l,ROW);
Fhorder rows of neighbors have now been copied
into myA [0, F] and myAn'+1,%]%

17. for i « 1 to n' do M for each of my (nonghost) rows®

1z, for § + 1 to n do M for all nonborder elements in that row*®

19. cemp = myA[i, 9],

20. myh[i,9] = 0.2 * (myA[i, 9] + myA[i, j-1] + myA[i-1,9] +
21. myh(i,9+1] + mrA[i+1,90);

22, mydiff += abs(myA[i,j] - cemp);

23, endfar

24 . endfor

SEcommunicate local diff values and determine if
done; can be replaced by reduction and broadeast®/

25a . if (pid != 0} then [Fprocess 0 holds global wtal diff*/
25h. SEND (mydiff, sizecf(float),0,DIFF);

Z5C. RECEIVE (done, sizeof (int) 0, DONE) ;

25d. elee *pid O does this*®/

25e. for i «+ 1 to nprocs-1 do [*for each other process*/
ZEF. RECEIVE (tempdiff, sizeof (float) , *,DIFF)

2Bg. mydiff += tempdiff; Faccumulate into total®/
25h. endfor

251 if (mydiff/in*n) « TOL) then done = 1;

2587, for i « 1 to nprocs-1 do [*for each other process*/
258k. SEND (done, sizecf (int) i, DONE) ;

251. endfor

2tm. endif

5. endwhile
27. end procedure

SCCS fseer

Notes on Message Passing Program

O
O

O 0O 0O O

O

Use of ghost rows

Receive does not transfer data, send does

» Unlike SAS which is usually receiver-initiated (load fetches data)
Communication done at beginning of iteration, so no asynchrony
Communication in whole rows, not element at a time

Core similar, but indices/bounds in local rather than global space
Synchronization through sends and receives

» Update of global diff and event synch for done condition
» Could implement locks and barriers with messages

Can use REDUCE and BROADCAST library calls to simplify code

/*communicate local diff values and determine if done, using reduction and broadcast™*/

25b. REDUCE (0 ,mydiff,sizeof(float) ,ADD) ;

25c. if (pid == 0) then

251. if (mydiff/(n*n) < TOL) then done = 1;
25k. endif

25m. BROADCAST (0,done,sizeof (int) ,DONE) ;

il FrHELT 45

SCTS él

Q00 0 0 QC O 0 0 0
o 0 0O O 0 0 0 0O O 0
0 0 O O O O O O O

Fg

Ghost Points and Ghost Row

© o 00000000
© o 00000000
© o0 0000000
" @ 0 8 © 0 06 6 © 0 ©
000000 0 0 0@
e 0000000 00
® 0 000 00 00
L2 e s 06000 e |
© 000OOOOO O
© 090000009 0
©O0C0O0ODOOOOO

10000000000

.f
72}
o
L)
)
2
Z
.

Kal

by process i

=
[

=
=
=

<€

Array held

Process i

-

1
Process it+1

!
|
—_

One row
of points

ﬁ#’“f’f’”ﬁkff 46

SCTS 5
Send and Recelve Alternatives

[0 Can extend functionality: stride, scatter-gather, groups

[Semantic flavors: based on when control is returned

Affect when data structures or buffers can be reused at either end
Send/Receive

/\

Synchronous Asynchronous

Blocking asynch. Nonblocking asynch.

» Affect event synch (mutual exclusive: only one process touches data)
» Affect ease of programming and performance

[0 Synchronous messages provide built-in synchronous through match
» Separate event synchronization needed with asynchronous messages

[0 With synchronous messages, our code is deadlocked

g FrH#xT 4

SCLS .leccL

oy

Orchestration: Comparison

[1 Shared address space

>

YV V V V

Shared and private data explicitly separate
Communication implicit in access patterns

No correctness need for data distribution
Synchronization via atomic operations on shared data

Synchronization explicit and distinct from data communication

[l Message passing

>

>
>
>

Data distribution among local address spaces needed
No explicit shared structures (implicit in communication patterns)
Communication is explicit

Synchronization implicit in communication (at least in synchronous

case
) gy Fra#nxT 48

SCTS 5

Summary in Grid Solver Program

[0 Decomposition and assignment similar in SAS and message-passing

[0 Orchestration is different

» Data structures, data access/naming, communication, synchronization

SAS Msg-Passing
Explicit global data structure? Yes No
Assignment independent of data layout? Yes No
Communication Implicit Explicit
Synchronization Explicit Implicit
Explicit replication of border rows? No Yes

[0 Requirements for performance are another story ...

il FrHELT 4

SCTS 5
References

[1 The content expressed in this chapter comes from

» Carnegie Mellon University’s public course, Parallel Computer
Architecture and Programming, (CS 418)
(http://www.cs.cmu.edu/afs/cs/academic/class/15418-
sl1l1/public/lectures/)

g FrH#xT 5o

	Parallel Programming Principle and Practice�Lecture 4 — Parallel Programming Methodology
	Outline
	MOTIVATING PROBLEMS
	Motivating Problems
	Simulating Ocean Currents
	Simulating Galaxy Evolution
	Rendering Scenes by Ray Tracing
	Creating a Parallel Program
	STEPS IN CREATING PARALLEL PROGRAM
	Some Important Concepts
	Limited Concurrency: Amdahl’s Law
	Amdahl’s Law Example
	First Attempt at Parallelization
	Parallelizing Phase 2
	Concurrency Profiles
	Steps in Creating a Parallel Program
	Decomposition
	Steps in Creating a Parallel Program
	Assignment
	Steps in Creating a Parallel Program
	Orchestration
	Steps in Creating a Parallel Program
	Mapping
	Parallelizing Computation vs. Data
	High-level Goals
	WHAT PARALLEL PROGRAMS LOOK LIKE
	Parallelization of an Example Program
	Grid Solver Example
	幻灯片编号 29
	Decomposition
	Exploit Application Knowledge
	Decomposition Only
	Assignment
	Data Parallel Solver
	Shared Address Space Solver
	幻灯片编号 36
	Notes on SAS Program
	Need for Mutual Exclusion
	Mutual Exclusion
	Global Event Synchronization
	Pt-to-pt Event Synch
	Group Event Synchronization
	Message Passing Grid Solver
	幻灯片编号 44
	Notes on Message Passing Program
	Ghost Points and Ghost Row
	Send and Receive Alternatives
	Orchestration: Comparison
	Summary in Grid Solver Program
	References

