Research on Replication

Topics and resolutions

Feng Mao
Cluster and Grid Computing Lab
Huazhong University of Sciee & Tech
fmao@hust.edu.cn
2004.3
Acknowledgments

- Group member:
 Hai Jin (PhD)
 Song Wu (PhD)
 Deqing Zou (PhD)
 Muzhou Xiong (PhD)
 Li Qi (Ms.)
 Baoli Chen (Ms.)

- China grid project
Outline

- Background on replication
- Replica location
- Replica placement
- Replica selection
- Current project
Back ground on replication

Replication vs. Caching

Cache

1. memory hierarchy \rightarrow cache proxy
2. reference locality, data will be accessed again in the near further
3. Sharing mode
Back ground on replication

Sharing by one user

CPU → cache → Memory → Hard disk

Sharing by multi-users

Cache proxy
Back ground on replication

Replication vs. Caching

Replication

- Data replication → Service replication
- Speed → QoS of availability
Back ground on replication

- Cache
 - access latency / speed
 - only help on multi-sharing mode

- replication
 - concurrence, high availability, soft real-time, state, cooperation
Back ground on replication

- Cache ---the simplest replication
document, simple static data, web page

- replication
document, service, process, minor web site
Back ground on replication

- P2P (peer to peer) mode
 Cooperation between replicas
 - P2P mode

1. Symmetric communication
2. combined client and server role
Back ground on replication

Why P2P mode

- [Dynamic operability] P2P applications must keep operating transparently although hosts join and leave the network frequently.
- [Performance and scalability] P2P applications exhibit what economists call the “network effect” in which a network’s value to an individual user scales with the total number of participants.
- [Reliability] External attacks should not cause significant data or performance loss.
- [Anonymity] The application should protect the privacy of people seeking or providing sensitive information.
Outline

- Background on replication
- Replica location
- Replica placement
- Replica selection
- Current project
Replica location

- Projects in history

 Napster → Gnutella → Free net → Chord /Pastry/CAN
Napster

- Free music over the Internet
- Key idea: share the storage *and* bandwidth of individual (home) users
- centralized server
- PP, BT
Gnutella

- Idea: multicast the request
- Send request to all neighbors. Neighbors recursively multicast the request. Eventually a machine that has the file receives the request, and it sends back the answer.
- Not scalable;
Freenet

- Each file is identified by a unique identifier
- Each machine stores a set of files, and maintains a “routing table” to route the individual requests
- Balance between scalability and availability
Chord /Pastry/CAN

Ring

Hypercube

Mesh
Outline

- Background on replication
- Replica location
- Replica placement
- Replica selection
- Current project
Replica placement

- How many to replica?
- Where to replica (local or time locality)?
- Local or global benefit?
- Storage or bandwidth? (time out)
Replica placement

- Static placement (startup)
- Dynamic placement (runtime)
Outline

- Background on replication
- Replica location
- Replica placement
- Replica selection
- Current project architecture
Replica selection

- Local or remote
Outline

- Background on replication
- Replica location
- Replica placement
- Replica selection
- Current project architecture
Current project architecture
Current project architecture

- **Core services**
 - Replica Locate -- RLS (replica location service)
 - Replica placement -- RPS (replica publish service)
 - Replica selection -- RMS (replica monitor service)

- **High level services**
 - Replica
Thank You

fmao@hust.edu.cn