Lecture 10 — Parallel Computing with MapReduce

Jin, Hai

School of Computer Science and Technology
Huazhong University of Science and Technology
Outline

- MapReduce Programming Model
- Typical Problems Solved by MapReduce
- MapReduce Examples
- A Brief History
- MapReduce Execution Overview
- Hadoop
Motivation: Large Scale Data Processing

- Want to process lots of data (>1TB)
- Want to parallelize across hundreds/thousands of CPUs
- ... Want to make this easy
MapReduce

- “A simple and powerful interface that enables automatic parallelization and distribution of large-scale computations, combined with an implementation of this interface that achieves high performance on large clusters of commodity PCs.”

- More simply, MapReduce is
 - A parallel programming model and associated implementation

Dean and Ghemawat, “MapReduce: Simplified Data Processing on Large Clusters”, Google Inc.
Some MapReduce Terminology

- **Job** – A “full program” - an execution of a Mapper and Reducer across a data set
- **Task** – An execution of a Mapper or a Reducer on a slice of data
 - a.k.a. Task-In-Progress (TIP)
- **Task Attempt** – A particular instance of an attempt to execute a task on a machine
Terminology Example

- Running “Word Count” across 20 files is one job
- 20 files to be mapped imply 20 map tasks + some number of reduce tasks
- At least 20 map task attempts will be performed… more if a machine crashes, etc.
Task Attempts

- A particular task will be attempted at least once, possibly more times if it crashes
 - If the same input causes crashes over and over, that input will eventually be abandoned

- Multiple attempts at one task may occur in parallel with speculative execution turned on
 - Task ID from TaskInProgress is not a unique identifier
MapReduce Programming Model

- Process data using special `map()` and `reduce()` functions

 - The `map()` function is called on every item in the input and emits a series of intermediate key/value pairs
 - All values associated with a given key are grouped together
 - The `reduce()` function is called on every unique key, and its value list, and emits a value that is added to the output
map

- Records from the data source (lines out of files, rows of a database, etc) are fed into the map function as key*value pairs: e.g., (filename, line)

- map() produces one or more intermediate values along with an output key from the input

 - map (in_key, in_value) ->
 (out_key, intermediate_value) list
reduce

- After the map phase is over, all the intermediate values for a given output key are combined together into a list
- `reduce()` combines those intermediate values into one or more *final values* for that same output key

```python
- reduce (out_key, intermediate_value list) -> out_value list
```
reduce

reduce (out_key, intermediate_value list) -> out_value list

initial

returned
MapReduce Architecture

- **Input key-value pairs**

 - Data store 1
 - Map
 - (key 1, values...)
 - (key 2, values...)
 - (key 3, values...)
 - Data store n
 - Map
 - (key 1, values...)
 - (key 2, values...)
 - (key 3, values...)

- **Barrier**
 - Aggregates intermediate values by output key

- **Reduce**
 - Key 1, intermediate values
 - Final key 1 values
 - Key 2, intermediate values
 - Final key 2 values
 - Key 3, intermediate values
 - Final key 3 values
MapReduce Programming Model

- More formally,
 - Map(k1,v1) --> list(k2,v2)
 - Reduce(k2, list(v2)) --> list(v2)
MapReduce in One Picture

Tom White, *Hadoop: The Definitive Guide*
MapReduce Runtime System

1. Partitions input data
2. Schedules execution across a set of machines
3. Handles machine failure
4. Manages interprocess communication
Parallelism

- map() functions run in parallel, creating different intermediate values from different input data sets
- reduce() functions also run in parallel, each working on a different output key
- All values are processed *independently*
- Bottleneck: reduce phase can’t start until map phase is completely finished
Locality

- Master program divides up tasks based on location of data: tries to have map() tasks on same machine as physical file data, or at least same rack
- map() task inputs are divided into 64 MB blocks: same size as Google File System chunks
Fault Tolerance

- Master detects worker failures
 - Re-executes completed & in-progress map() tasks
 - Re-executes in-progress reduce() tasks

- Master notices particular input key/values cause crashes in map(), and skips those values on re-execution
 - Effect: Can work around bugs in third-party libraries!
Optimizations

- No reduce can start until map is complete
 - A single slow disk controller can rate-limit the whole process

- Master redundantly executes “slow-moving” map tasks; uses results of first copy to finish

- “Combiner” functions can run on same machine as a mapper

- Causes a mini-reduce phase to occur before the real reduce phase, to save bandwidth
Optimizations
MapReduce Benefits

- Greatly reduces parallel programming complexity
 - Reduces synchronization complexity
 - Automatically partitions data
 - Provides failure transparency
 - Handles load balancing
Outline

- MapReduce Programming Model
- Typical Problems Solved by MapReduce
- MapReduce Examples
- A Brief History
- MapReduce Execution Overview
- Hadoop
MapReduce: High Level

MapReduce job submitted by client computer

Master node

JobTracker

Slave node

TaskTracker

Task instance
Nodes, Trackers, Tasks

- Master node runs *JobTracker* instance, which accepts *Job* requests from clients

- *TaskTracker* instances run on slave nodes

- *TaskTracker* forks separate Java process for task instances
Typical Problems Solved by MapReduce

- Read a lot of data
- **Map**: extract something you care about from each record
- **Shuffle** and **Sort**
- **Reduce**: aggregate, summarize, filter, or transform
- Write the results

- Outline stays the same, but **map** and **reduce** change to fit the problem
Outline

- MapReduce Programming Model
- Typical Problems Solved by MapReduce
- MapReduce Examples
- A Brief History
- MapReduce Execution Overview
- Hadoop
MapReduce Examples

- **Word frequency**

![Diagram](Image)

- Document (`doc`)
- Map function
- Reduce function
- Runtime System

Input: `doc` -> Map: `<word,1>`, `<word,1>`, `<word,1>` -> Reduce: `<word,3>`
Example: Count Word Occurrences

```java
map(String input_key, String input_value):
    // input_key: document name
    // input_value: document contents
    for each word w in input_value:
        EmitIntermediate(w, "1");

reduce(String output_key, Iterator intermediate_values):
    // output_key: a word
    // output_values: a list of counts
    int result = 0;
    for each v in intermediate_values:
        result += parseInt(v);
    Emit(AsString(result));
```
Example: Count Word Occurrences

The overall MapReduce word count process

Input

Splitting

Mapping

Shuffling

Reducing

Final result

Deer Bear River
Car Car River
Deer Car Bear

Deer, 1
Bear, 1
River, 1

Car, 1
Car, 1
River, 1

Bear, 2
Bear, 1

Car, 1
Car, 1
Car, 1

Deer, 2
Deer, 1

River, 1
River, 1

Bear, 2
Car, 3
Deer, 2
River, 2
MapReduce Examples

- Distributed grep
 - Map function emits `<word, line_number>` if word matches search criteria
 - Reduce function is the identity function

- URL access frequency
 - Map function processes web logs, emits `<url, 1>`
 - Reduce function sums values and emits `<url, total>`
Outline

- MapReduce Programming Model
- Typical Problems Solved by MapReduce
- MapReduce Examples
- A Brief History
- MapReduce Execution Overview
- Hadoop
MapReduce is a new use of an old idea in Computer Science

- Map: Apply a function to every object in a list
 - Each object is independent
 - Order is unimportant
 - Maps can be done in parallel
 - The function produces a result

- Reduce: Combine the results to produce a final result

You may have seen this in a Lisp or functional programming course
Outline

- MapReduce Programming Model
- Typical Problems Solved by MapReduce
- MapReduce Examples
- A Brief History
- MapReduce Execution Overview
- Hadoop
1. The user program, via the MapReduce library, shards the input data

* Shards are typically 16-64MB in size
Getting Data To The Mapper

Input file

InputSplit

RecordReader

Mapper

(intermediates)

InputFormat
MapReduce Execution Overview

2. The user program creates process copies distributed on a machine cluster. One copy will be the “master” and the others will be worker threads.
MapReduce Execution Overview

3. The master distributes M map and R reduce tasks to idle workers

- $M ==$ number of shards
- $R ==$ the intermediate key space is divided into R parts
Partition and Shuffle

Mapper

(intermediates)

Mapper

(intermediates)

Mapper

(intermediates)

Mapper

(intermediates)

Reducer

Reducer

Reducer

Partitioner

Partitioner

Partitioner

Partitioner

shuffling

(intermediates)

(intermediates)

(intermediates)
4. Each map-task worker reads assigned input shard and outputs intermediate key/value pairs

- Output buffered in RAM
MapReduce Execution Overview

5. Each worker flushes intermediate values, partitioned into R regions, to disk and notifies the Master process.
6. Master process gives disk locations to an available reduce-task worker who reads all associated intermediate data.
MapReduce Execution Overview

7. Each reduce-task worker sorts its intermediate data. Calls the reduce function, passing in unique keys and associated key values. Reduce function output appended to reduce-task’s partition output file.
8. Master process wakes up user process when all tasks have completed. Output contained in R output files
Writing The Output

Reducer

RecordWriter

output file

Reducer

RecordWriter

output file

Reducer

RecordWriter

output file

OutputFormat
MapReduce Execution Overview

☐ Fault Tolerance

➢ Master process periodically pings workers
 • Map-task failure
 ✔ Re-execute
 ▶ All output was stored locally
 • Reduce-task failure
 ✔ Only re-execute partially completed tasks
 ▶ All output stored in the global file system
Outline

- MapReduce Programming Model
- Typical Problems Solved by MapReduce
- MapReduce Examples
- A Brief History
- MapReduce Execution Overview
- Hadoop
Hadoop

- Open source MapReduce implementation

<table>
<thead>
<tr>
<th>Google calls it</th>
<th>Hadoop equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>MapReduce</td>
<td>Hadoop</td>
</tr>
<tr>
<td>GFS</td>
<td>HDFS</td>
</tr>
<tr>
<td>Bigtable</td>
<td>HBase</td>
</tr>
<tr>
<td>Chubby</td>
<td>(nothing yet… but planned)</td>
</tr>
</tbody>
</table>
HDFS Architecture

Metadata ops

Namenode

Metadata (Name, replicas, ...): /home/foo/data, 3, ...

Client

Read

Datanodes

Block ops

Datanodes

Replication

Rack 1

Write

Client

Rack 2

Blocks
Hadoop Related Projects

- **Ambari**: A web-based tool for provisioning, managing, and monitoring Apache Hadoop clusters which includes support for Hadoop HDFS, Hadoop MapReduce, Hive, HCatalog, HBase, ZooKeeper, Oozie, Pig and Sqoop. Ambari also provides a dashboard for viewing cluster health such as heat maps and ability to view MapReduce, Pig and Hive applications visually along with features to diagnose their performance characteristics in a user-friendly manner.

- **Avro**: A data serialization system

- **Cassandra**: A scalable multi-master database with no single points of failure

- **Chukwa**: A data collection system for managing large distributed systems

- **HBase**: A scalable, distributed database that supports structured data storage for large tables (NoSQL)

- **Hive**: A data warehouse infrastructure that provides data summarization and ad hoc querying

- **Mahout**: A Scalable machine learning and data mining library

- **Pig**: A high-level data-flow language and execution framework for parallel computation

- **ZooKeeper**: A high-performance coordination service for distributed applications
References

- Introduction to Parallel Programming and MapReduce, Google Code University

- Distributed Systems

- MapReduce: Simplified Data Processing on Large Clusters

- Hadoop
 - http://hadoop.apache.org/core/